EE 308 Lab Spring 2009

FINAL PROJECT: INTERFACING AND MOTOR CONTROL

In this sequence of labs you will learn how to ifgee with additional hardware and implement a moto
speed control system.

WEEK 1
PORT EXPANSION FOR THE MC9S12
Pre-Lab

1. Write a Verilog program to implement an eightdaitput port at address 0x4001 and an eight-pititin
port at address 0x4000.

Introduction and Objectives

It is sometimes necessary to add additional merandyor hardware to a microprocessor or
microcontroller. While interfaces such as the S®Mayou to add some hardware, it is often necgskar
interface directly to the address/data bus. Forcaaprocessor, which does not have built-in penplsg
the address/data bus is the only way to add additimemory or hardware. In this lab you will addesttra
output port to your MC9S12.

Port A

] FDBR(TET
Port B M LATcH V|- .
ADDR = 0x4000
o R
ADDR = 0x4001

LSTRB = 0

HCS12

I
|
l
|
I
l
|
I
ENA :
|
|
l
l
|
l
1

Writing to address 0x4001 (ADDR = 0x4000 or 0x4001, LSTRB low, R/W low) will bring WE low.
On the high-to-low transition of E with WE low, the data into the flip-flops

Reading from address 0x4001 (ADDR = 0x4000 or 0x4001, LSTRB low, R/W high, E high) will bring CS_R lc
This will drive the data from the flip-flops onto the data bus
The HCl12 will read the data on the flip-flops on the high-to-low transition of the E-clock

Figure 1.Block diagram of HCS12 output port at address 02400

Figure 1 shows a block diagram for adding an exfesntput port at address 0x4001 to the
microcontroller. You will implement the port in yoAltera FPGA board from EE 231. Note that you will
have to connect the 16-bit multiplexed address/dasaand three control lines from your MC9S12 taryo

EE 308 Lab Spring 2009

Altera board. You will have the eight bits of yautput port at 0x4001 control the LEDs on your Adte
board to verify that the output port is workingof Verilog program should also implement an eigjht-
input port at address 0x4000. Connect the foutcéws on the Altera board to the input port at @380
you can see that the input port works.

1. Write an Verilog program to implement the expangorts.

2. Assign the pins for the Altera chip so you canrect the sixteen address/data lines and threeoton
lines to your MC9S12. Also, assign the pins so thatoutput port controls the LEDs on the Alterartol
and the four least significant bits of the inputtpre connected to the switches of the Altera éhoddote
that there will be a lot of wires to run, so ieissential that you are neat in your wiring. Beegarassign
the E input to pin J-13 (CLK3 of tHeE 231 board) oK-13 (CLK2). These arglobal clockinputs,
which means the E clock will be routed direcththe clock input of the flip-flops and latches with@any
delay of going through other logic.

3. Check the functioning of your port using D-Bug¥2hen you start your MC9S12 using D-Bugl12, the

microcontroller is in single chip mode. In this neogbu can manipulate AD-15-0, R/W and LSTRB as
general purpose /O lines. You can use the MM contri D-Bugl2 to write data to the output port by

changing AD15-0 (PORTA and PORTB), R/W and LSTRB in the same sequence that the MC9S12
would if it were in expanded wide mode.

a) Use the DDRE register to make B/W and LSTRB output pins. (Note: E is bit 4 of PORTE, R/W is
bit 2 of PORTE, and LSTRB is bit 3 of PORTE.

b) Bring E low by writing to PORTE.

c) Put 0x4001 on PORTA and PORTB.

d) Bring R/W and LSTRB low.

e) Bring E high.

f) Put the data you want to write to the port onRAB.
g) Bring E low.

4. The program below can be put into EEPROM sogaurun your board in wide expanded mode. To get
into wide expanded mode, you will have to put griegram into EEPROM starting at address 0x0400, and
then set DIP Switch SW7 so you run your EEPROM moygrather than DBug12. (You cannot run in
expanded wide mode using DBug12, since DBug12 thieeBlash EEPROM in the region 0x4000-0x7fff.)

Spring 2009

EE 308 Lab

#include "hcglZz.h"
#include "DBuglZz. h"
#include "vectorsl2. h"

#define IN_PCRT
#define OUT_PORT

(*(
(*(

INTERRUPT RTI_isr(1,
done:

main()

{
~* Set bus clock to 24 MHz *~
(" sei;"y;
CLKSEL &= ~0x80;
PLLCTL |[= 0x40;
SYNR = 0x05;
REFIV = 0x01;
((CRGFLG & 0x08) ==
CLKSEL |= 0x80;
Z* Put MC9S812 into wide expan
MODE = 0xe§;
PEAR = 0x0c;
EBICTL = 0x01:
MISC = 0x03;

DDRF =
PTP =

DDRP | 0x0F;
PTP | O0xOF:

/* Set up SCI
SCIOBDH
SCIO0BDL
SCIOCR1
SCIOCR2

0x00;
0x9C;
0x00;
0x0C;

/* Set up RTI
* terminal *~

for using DBLlZFNP-rprintf()

to increment 0x4001,

*) 0%4000)
*) 0x4001)

ded mode */
* Expanded wide mode,
/* Turn on R-/W, LSTRB, E

s

IV on *~

7% Use E-clock to control external bus *~
/* No E-clock stretch, disable ROM from

4000-7FFF *~

#* Make 4 LSB of Port P outputs *~

#* Turn off seven-seg LEDs

*s
/% 9600 Baud *~

/% Enable transmit,

UgerRTI =] GRTI_isr;
RTICTL = 0x13; 7% 131 ms rate *~
CRGINT |= BIT?; /* Enable RTI interrupt *~

(" cli");
DBl12FNP->printf("hello, world~r~n");

(1)
{!done) ;
DBl2FNP-»>printf("switches = %x, LEDs = %x~r~n',

IN_PCORT & 0x0
done = 0;

INTERRUFT RTI_isr(]

CUT_PORT =
done = 1:
CRGFLG =

QUT_PORT + 1.

BIT?7.

f, OUT_PORT & Oxff).

receive */

* s

and display 0x4000 on the computer

EE 308 Lab Spring 2009

WEEKS 2 and 3

MOTOR SPEED CONTROL

Introduction and Objectives

In this lab you will control the speed of a motBigure 1 shows the hardware setup, which is theesaam
for Week 1 of Lab 4. You will use the potentiometeryour evaluation board to set the desired spéed
the motor, and you will control the speed througg PWM output of the HCS12. You will measure the
speed of the motor using an input capture pin,display the desired and actual speeds on the tatmin

+5V

I I
] I
| |
I]
I I
I I
I I
] I
I I
| |
MC9812 | |
I I
blue | 'M !
PTO : \/
I
PP4 ; :
PAO ! :
PA1 — ; _ w
] I
SNT54410 ~ - S
1 16 black
ENA12 VDD — +5V
2 15
IN1 INd— —
green 3 14 -
—{OuUT1 ouT4—
Motor 4 &ND GND 13
L 5 12 —
yellow ~—,|OUT2 ouT3- -
o N2 IN3— -
+15V VM ENA34,
l,

Figure 1.Block diagram of HCS12 output port at address 05405
1. Build the circuit shown in Figure 1.
2. Set up the RTI to generate an interrupt onceye®ens. In the interrupt service routine, incretneBDs
connected to Port A. Verify from the rate at whibk LEDs are incrementing that you are getting

interrupts at a rate of 8 ms.

3. Program the A/D converter to read the value ftbenpot. Use 8-bit A/D mode. In your RTI ISR, read
the A/D converter, and write the eight most sigaifit bits to Port A. In the main program loop, thgghe

EE 308 Lab Spring 2009

value read on the LCD diplay. (Do not print instie ISR — this will take more than 8 ms, and yolll wi
miss interrupts.) Verify that the A/D values chamgeexpected as you use the pot to change thaygolta

4. Set up the PWM to generate a 50 kHz PWM signaire of the four PWM channels. Set it up for high
polarity. It will be easiest to set PWPERX to 2¥8rify that the PWM works. In the RTI ISR, writeeth
eight most significant bits to the A/D value yoadeo PWDTYXx. The motor speed should change as you
sue the pot to vary the voltage on the A/D.

5. Measure the speed of the motor. Set up an @apture interrupt to determine the time between two
falling edges of the optical encoder. In your m@iagram write display this time on the LCD displayou
can use floating point arithmetic to convert tlset into RPM. Display the RPM value on the LCD
display.

6. Measure the speed for several different dutyesyy varying the voltage with the pot. Plot spesd
duty cycle.

7. Implement closed-loop speed control. The despestd Sd should be

S =(02+08)Smax

AD max

where Smax is the motor speed at 100% duty cydleisAhe A/D converter reading, and ADmax is the
maximum A/D converter reading. In this way you vi# able to vary the speed between 20% and 100% of
Smax.

To set the motor at the desired speed you can sisepe equation (proportional control) such as:

DCnew = DCold + k(Sd — Sm)

where Sm is the measured speed. Do this calculatsice the RTI ISR, and write the new value to
PWDTYXx. Try different values of k to see how thetoraresponds. If k is too small, it will take a tptime
for the motor to get to its steady-state speeklidftoo large, the motor will be jerky as it trissettle
down to its steady-state speed.

It will be much easier to do these calculationsigdioating point numbers rather than using integ¥ou
can use floating point numbers with the GNU compile the EmbeddedGNU IDE, select the Options
menu, Project Options submenu. Near the bottorheopbp-up window, add the following to the Compiler
options:

fshortdouble

By doing this, you will be able to do basic opayasi with floating point numbers (add, subtract, tiply,

divide). Do not try to use functions which requine math library (such as sqrt()); the code gerédrhy

the Gnu compiler will be too large to fit into thREC9S12. To print out a floating point number yousinu
first convert it to an integer. For example,

float x;
x=10.2;
DB12FNP->printf(“x = %d\r\n”,(short) x);

EE 308 Lab Spring 2009

If you use this method to primtwhenx is, say, 0.023, the value printed out will be zéfou could

use the following to print a usable value for
DB12FNP->printf(“x = %d/1000\r\n",(short) (x*1000. 0));
The output from this whexis 0.023 will be23/1000

8. Measure the motor speed for various valuespftimoltage. Take about 10 equally-spaced
measurements for input voltage between 0 and 5 V.

9. With the pot set at about mid-range, vary thikage of the voltage powering the motor (say betwge
V and 14 V). With closed-loop control the speedhaf motor should stay the same. Verify that thibhés
case.

10. Using the data from Part 8, plot the speedRMRys. the input voltage from the port — i.e., cemvhe
speed measurement in time difference between tivogadges to speed in RPM.

