EE 308

Spring 2009

Input and Output Ports

e How do you get data into a computer from the outside?

SIMPLIFIED INPUT PORT

nHEpB3QHN®n

PAarOdcO BoHRMH

D,
Dg
D
H 5
C
1
2 Dy
D
a
t D
a 3
L
i D
a 2
e
S
Dj
Do
Read fram |

00000

AAAAN A

Any read fram address $0000
gets signals fram outside
IDAA $00

Puts data fram outside
into accumuilator A.

Data fram outside looks
like a memory location

ot ? m

TRT

A Tri—-State Buffer acts like a switch

If TRT is actiwve, the switch is closed
OUT will be the same as IN

EE 308 Spring 2009

e How do you get data out of computer to the outside?

SIMPLIFIED OUTPUT PORT
D77D Qo
[Any write to address $01 latches
data into flip-flops, so data
D6 D Q——— goes to external pins
B S
i MOVB #$AA, $01
o 05 b o a
g-; | a puts $AA on the external pins
1
2 Dy D O s
D T When a port is configured as output
? D ° and you read fram that port, the
a 3 Do o data you read is the data which was
u written to that port:
L t
i I s
n D2 b e i MVB #$84, $01
e d IDAA $01
s e
D3 D 9 Accumilator A will have $RA after this
Do D O —
Write to

0x0001

EE 308 Spring 2009

e Most I/O ports on MC9S12 can be configured as either input or output

SIMPLIFIED INPUT/OUTPUT PORT

-

Read from Address 0x0000

D,—e—D O ‘ ® PA

v 7
Write to Address 0x0000 DDRA 5

A write to address 0x0000 writes data to the flip-flop
A read from address 0x0000 reads data on pin

If Bit 7 of DDRA is 0, the port

is an input port. Data written to
flip—-flop does not get to pin
through tri-state buffer

If Bit 7 of DDRA is 1, the port

is an output port. Data written to
flip-flop does get to pin

through tri-state buffer

DDRA (Data Direction Register A) is located at 0x0002

EE 308

Spring 2009

MC9S12DP256B Device User Guide — V02.13

Figure 1-1 MC9S12DP256B Block Diagram

VRH | VRH |<—VRH
| 256K Byte Flash EEPROM | ATDO VRL | ATD1 VRL |le—VRL
VDDA | VDDA |<—VDDA
I 12K Byte RAM I VSSA VSSA |=«—VSSA
ANO |«—PADOO ANO || J«—PADO8
| 4K Byte EEPROM | AN1 |<«—PADO1 AN1 [|<€—PADO09
AN2 <—PAD02 AN2 |« |<—paD10
VDDR—»] AN3] [=<—PADO3 AN3 | = [«—PADI1
VSSR—>| AN4 < [«—PADO4 AN4 |« < |<—PAD12
VREGEN—»| Voltage Regulator AN5 |<—PADO5 AN5 [« [«—PAD13
VDD1,2 <€ ANG l«—PADOG ANG |«-{ |«—PAD14
VSS1,2 = AN7 <«—PADO7 AN7 |« |=—PADI15
Single-wire Background PIXO <> [<>PKO, XADDR14,
BKGD=>1"""pebug Module CPU12 PPAGE PIX1 || [<=PK1 ' XADDRIS5'
PIX2 [X [<>PK2, XADDR16
- « \ \
XFC Clock and PIX3 [« & | E [«=PK3 + XADDR17:
VDDPLL < 8la . ,
vssPLL={ PLL Reset Periodic Interrupt PIX4 <> [<>PK4, XADDR1S,
Generation PIX5 |e>| l«»PK5 . XADDR19:
EXTAL—» Module COP Watchdog ECS |er] <> pK7 ' ECS X
XTAL =] Clock Monitor p—rror—o-r-—--:-:ikokioroon . ——1 T
RESET > Breakpoints 10CO [=>| <> PTO
JE— 10C1 fe>] le> PT1
E’FE?.—» : %Q 10C2 > - le> pT2
PE2<>] le>| RV System Enhanced Capture 10C3 || v »': le> PT3
PE3 w Integration Timer 10C4 [« 2 [a [« PT4
<> LU | v |« LSTRB [a]
=13 Module 10C5 [=> <> PT5
PE4->{n <> ECLK
a (SIM) 10C6 [<> le> PT6
PES5-=>] <> MODA 1007 | i
PE6->] <> MODB
PE7->] <> NOACC/XCLKS sclo RXD |- [<>PS0
TesT—] TXD > le»pPs1
sci RXD | [>ps2
1RPEO49Y FOeNEEY vob-@|ofers
- MISO | > o fe=Ps4 g
Multiplexed Address/Data Bus | MOS! | |0 <= PSS §
TEaedy paaaaaae |70 x| e &
SS [<>Ps7 a
DDRA DDRB 1y)
BDLC RXB =] @
PTA PTB (J1850) TXB }—» o > [<>PMO =
TEIRRARY PRI ENORY [omoRONIS £ [| [hw e
fegzodge HERISIDS S e [= M2 g
FEsfssss GEEEEEEER CAN1 RXCAN <— = nig 4 E"’P'VB E]
93995900 ~owyoyos DCAN > & g e g
TEEEEEEE EEEZESEE [caveoom| 5| = [| [¢
o0na0000Qa 00AQ0AA00Adad TXCAN [—>| & »] l<>PM6 =
LI I RXCAN |<— 3 lenl lespM7 S
O S N = TLLCANS ean | B 3
mapered 33993222 ze23222! Pl | =
+ Wide Bus ' CAN4 s
. §8888888 88888888 TXCAN &
VTt e Tt : KWJ0 | <= PJO 2
‘Multiplexed < S S S S S K& ¢ KWJL fer &2 [= JeemPa1 S
‘NarrowBusgE T g g g 552 C SDA Kkwie [« § o [<>ris @
B - SCL KWJ7 | [<pPJ7
Internal Logic 2.5V 1/0 Driver 5V
VDD1.2 VDDX PWMO |<—3 KWPO f«>{ [>PPO
s - —
VSS12 VaSX PWM1 KWP1 [[>PP1
-1 L PWM2 [<ef—>{ KWP2 [<> le»pp>
- = pwhm PWM3 [<p—>| KWP3 [« ¢ |0 [<>PP3
A/D Converter 5V & PWM4 |}—| KWP4 [« g o |<= PP4
PLL 2.5V Voltage Regulator Reference Syvved Bl I v B | s PP5
VDDPLL <— VDDA —>» PWM6 KWP6 [« [<>PP6
VSSPLL PWM7 KWP7 [« |<>pPP7
-1 VSSA /.
- = MISO KWHO [[<>PHO
MOSI KWH1 [[ePH1
Voltage Regulator 5V & 1/0
\?DDR g_> SPiL SCK [« KWH2 <> - l>PH?2
VSSR SS || KWH3 || v E l>PH3
_-L- MISO |3 KWH4 |« 8 o |e=PH4
Sply MOSI [KWHS [le»PH5
SCK KWHS6 [[>PH6
SS KWH?7] [<>PH7

@ MOTOROLA

EE 308 Spring 2009

Ports on the HC12

e How do you get data out of computer to the outside?

e A Port on the HC12 is device the HC12 uses to control some hardware.

e Many of the HC12 ports are used to communicate with hardware outside
of the HC12.

e The HC12 ports are accessed by the HC12 by reading and writing mem-
ory locations $0000 to $03FF.

e Some of the ports we will use in this course are PORTA, PORTB, PTJ and
PTP

e PORTA is accessed by reading and writing address $0000.

— DDRA is accessed by reading and writing address $0002.
e PORTB is accessed by reading and writing address $0001.

— DDRB is accessed by reading and writing address $0003.
e PTJ is accessed by reading and writing address $0268.

— DDRJ is accessed by reading and writing address $026A.
e PTP is accessed by reading and writing address $0258.

— DDRP is accessed by reading and writing address $025A.

e On the DRAGONI12-Plus EVB, eight LEDs and four seven-segment
LEDs are connected to PTB.

— Before you can use the eight individual LEDs or the seven-segment
LEDs, you need to enable them.

— Bit 1 of PTJ must be low to enable the eight individual LEDs
— Bits 3-0 of PTP are used to enable the four seven-segment LEDs

* A low PTPO enables the left-most (Digit 3) seven-segment LED

x A low PTP1 enables the second from the left (Digit 2) seven-
segment LED

* A low PTP2 enables the third from the left (Digit 1) seven-segment,
LED

EE 308 Spring 2009

« A low PTP3 enables the right-most (Digit 0) seven-segment LED

— To use the eight individual LEDs and turn off the seven-segment
LEDs, write ones to Bits 3-0 of PTP:

BSET #$0F , DDRP ; Make PTP3 through PTPO outputs
BSET #$0F,PTP ; Turn off seven-segment LEDs

e On the DRAGON12-Plus EVB, the LCD display is connected to PTK

e When you power up or reset the HC12, PORTA, PORTB, PTJ and PTP are
input ports.

e You can make any or all bits of PORTA, PORTB PTP and PTJ outputs by
writing a 1 to the corresponding bits of their Data Direction Registers.

— You can use DBug-12 to manipulate the IO ports on the 68HCS12
« To make PTB an output, use MM to change the contents of address
$0003 (DDRB) to an $FF.

* You can now use MM to change contents of address $0001 (PORTB),
which changes the logic levels on the PORTB pins.

« If the data direction register makes the port an input, you can
use MD to display the values on the external pins.

EE 308

Spring 2009

Using Port A of the 68HC12

'IbnakeabltofPortAano.ltEtgut rt,
a 1 to the corresponding bi DDRA(addressOxOOOZ).
To make a bit of Port A an input port, write a 0 to

the corresponding bit of DDRA.

On reset, DDRA is set to $00, so Port A is an
J.nputport

DDA7 | DDA6 | DDAS | DDA4 | DDA3 | DDA2 | DDAL | DDAO $0002
0 0 0 0 0 0 0 0

Fore:ar?le to make bits 3-0 of Port A input, and
bits 7-4 output, write a O0xf0 to DDRA.
To send data to the output pins, write to

PORTA (address 0x0000) . When you read fram PORTA
input pins will return the value of the signals on them
(0= 0V, 1 = 5); ocutput pins will return the value
written to them.

PA7 |PA6 (PA5 (PA4 (DP3 |PA2 | PAl | PAD $0000

Port B works the same DDRB is at address 0x0003
and PCRIB is at addressOxOOl

EE 308 Spring 2009

;A simple program to make PORTA output and PORTB input,
;then read the signals on PORTB and write these values
;out to PORTA

prog: equ $1000
PORTA: equ $00
PORTB: equ $01
DDRA: equ $02
DDRB: equ $03
org prog

movb #$ff ,DDRA ; Make PORTA output
movb #$00,DDRB ; Make PORTB input

ldaa PORTB

staa PORTA
swi

e Because DDRA and DDRB are in consecutive address locations, you could
make PORTA and output and PORTB and input in one instruction:

movw #$££00,DDRA ; FF -> DDRA, 00 —-> DDRB

EE 308 Spring 2009

GOOD PROGRAMMING STYLE

1. Make programs easy to read and understand.

e Use comments

e Do not use tricks
2. Make programs easy to modify

e Top-down design
e Structured programming — no spaghetti code

e Self contained subroutines

3. Keep programs short BUT do not sacrifice items 1 and 2 to do so

TIPS FOR WRITING PROGRAMS

1. Think about how data will be stored in memory.
e Draw a picture

2. Think about how to process data
e Draw a flowchart

3. Start with big picture. Break into smaller parts until reduced to indi-
vidual instructions

e Top-down design

4. Use names instead of numbers

EE 308 Spring 2009

Another Example of an Assembly Language Program

e Find the average of the numbers in an array of data.
e The numbers are 8-bit unsigned numbers.

e The address of the first number is $E000 and the address of the final
number is $E01F. There are 32 numbers.

e Save the result in a variable called answer at address $2000.

Start by drawing a picture of the data structure in memory:

FIND AVERAGE OF NUMBERS IN ARRAY FROM 0xE000 TO OxEO1lf

Treat numbers as 8-bit unsigned numbers

0xEOQ000

O (00 [[0 |

11

OxEOQO1F

10

EE 308 Spring 2009

Start with the big picture

FIND AVERAGE OF 8-BIT NUMBERS IN ARRAY FROM 0xE000 TO OxEO1lf

4 0xE000
5
1
8
6
Init
11
Process
Entries
Save
Answer
0xEQ1F

11

EE 308 Spring 2009

Add details to blocks

SUM ODD 8-BIT NUMBERS IN ARRAY FROM 0xE000 TO OxEO1lf

. 4
E - } [Init } ‘ 0xE000
1
8
. Addr —> 6
Init
Pointer 11
Process
Entries 0 —> Sum
Save [}
Done
Answer
0xEOQO1F

12

EE 308 Spring 2009

Decide on how to use CPU registers for processing data

FIND AVERAGE OF 8-BIT NUMBERS IN ARRAY FROM 0xE000 TO OxEO1lf

: 4 0xE000
[START] [Init } 5
1
8
i Addr -> 6
Init
Pointer 11
Process
Entries 0 —> Sum
Save
Done
Answer [}
OxEO1F
Pointer: X or Y —— use X

Sum: 16-bit register
Dor Y

No way to add 8-bit number to D
Can use ABY to add 8-bit number to Y

13

EE 308 Spring 2009

Add more details: Expand another block

FIND AVERAGE OF 8-BIT NUMBERS IN ARRAY FROM 0xE000 TO OxEO1lf

. Process X —> 1
e | [e | (== -
loop: 1
Y / .
Init Addr -> Get 6
i Pointer Num .
Process Add Num
Entries 0 —> Sum to Sum
Save [}
Done
Answer
Y
[Done]
O0xEOQO1F

EE 308

Spring 2009

More details: How to tell when program reaches end of array

FIND AVERAGE OF 8-BIT NUMBERS IN ARRAY FROM 0xE000 TO OxEO1lf

Process
START Init ;
Entries

How to check if more to do?
If X < 0xE020, more to do.

BLT or BLO?

Addresses are unsigned, so BLO

How to find average? Divide by LEN
To divide, use IDIV

TFR Y,D ; dividend in D
LDX #LEN ; divisor in X
IDIV

15

> loop:
Y Y Y
Init Addr => | % #ARRAY get
ni
Pointer Num
Y Y Y
Process Add Num
Entries 0 -> Sum | LDY #0 to Sum
Y Y Y
Find Inc
Done
Average [} Pointer
Y l
Save
Answer
Y

-

o [0 |||

11

0xE000

OxEOQO1F

EE 308 Spring 2009
Convert blocks to assembly code
FIND AVERAGE OF 8-BIT NUMBERS IN ARRAY FROM 0xE000 TO OxEO1lf
A Process
START Init Entries
> 1 :
Y v y °F
Init Addr => | X #ARRAY get LDAB 0,X
nt Pointer Num !
A Y A
dd
;;::i:: 0 —> Sum | LDY #0 p;o ;:2? ABY
TFR Y,D Al Y
LDX #LEN Find [Done } INX
IDIV Average
A
STD ANSWER g,ve
Answer CMPX #ARRAY END
BLO loop
A

0xE000

|0 (|0

11

OxEO1F

ARRAY

ARRAY END

16

EE 308

Spring 2009

Write program

;Program to average 32 numbers in a memory array

prog: equ
data: equ

array: equ
len: equ

org

1dx
ldy
1dab
aby
inx
cpx
blo

loop:

tfr
1dx
idiv
stx
swi

org
answer: ds.w

$2000
$1000

$E000
32

prog
#array

#0
0,x

#(array+len)
loop

y,d
#len

answer

data

; lnitialize pointer
; initialize sum to O
; get number

; odd - add to sum

; point to next entry
; more to process?

; 1f so, process

; To divide, need dividend in D
; To divide, need divisor in X

; D/X quotient in X, remainder in D

; done —-—- save answer

; reserve 16-bit word for answer

e Important: Comment program so it is easy to understand.

17

EE 308 Spring 2009

The assembler output for the above program

asl2, an absolute assembler for Motorola MCU’s, version 1.2h

;Program to average 32 numbers in a memory array

2000 prog: equ $2000

1000 data: equ $1000

e000 array: equ $E000

0020 len: equ 32

2000 org prog

2000 ce e0 00 ldx #array ; initialize pointer

2003 cd 00 00 ldy #0 ; initialize sum to O

2006 e6 00 loop: 1dab 0,x ; get number

2008 19 ed aby ; odd - add to sum

200a 08 inx ; point to next entry

200b 8e e0 20 cpx #(array+len) ; more to process?

200e 25 f6 blo loop ; 1f so, process

2010 b7 64 tfr y,d ; To divide, need dividend in D
2012 ce 00 20 1dx #len ; To divide, need divisor in X
2015 18 10 idiv ; D/X quotient in X, remainder in D
2017 7e 10 00 stx answer ; done —-- save answer

201a 3f swi

1000 org data

1000 answer: ds.w 1 ; reserve 16-bit word for answer

Executed: Fri Feb 06 10:47:51 2009
Total cycles: 46, Total bytes: 27
Total errors: 0, Total warnings: O

And here is the .s19 file:

S5011000046696C653A206176672E61736D0OA5D
S1132000CEEO00CDO000E60019EDOSSEE02025F6B4
S10E2010B764CE002018107E10003FC3
S9030000FC

18

