
EE 308 Spring 2009

What Happens When You Reset the HCS12?

• What happens to the HCS12 when you turn on power or push the reset button?

• How does the HCS12 know which instruction to execute first?

• On reset the HCS12 loads the PC with the address located at address 0xFFFE and
0xFFFF.

• Here is what is in the memory of our HCS12:

0 1 2 3 4 5 6 7 8 9 A B C D E F

FFF0 F6 EC F6 F0 F6 F4 F6 F8 F6 FC F7 00 F7 04 F0 00

• On reset or power-up, the first instruction your HCS12 will execute is the one located
at address 0xF000.

1

EE 308 Spring 2009

The 9S12 Timer

• The 9S12 has a 16-bit free-running counter (timer).

• The 9S12 allows you to slow down the clock which drives the counter.

• You can slow down the clock by dividing the 24 MHz clock by 2, 4, 8, 16, 32, 64 or 128.

• You do this by writing to the prescaler bits (PR2:0) of the Timer System Control
Register 2 (TSCR2) Register at address 0x004D.

slow down the clock:

2.7307 ms will be too short if you want to see lights flash.

PR2:0 Divide Freq Overflow Rate

000 1 24 MHz 2.7307 ms
001 2 12 MHz 5.4613 ms
010 4 6 MHz 10.9227 ms
011 8 3 MHz 21.8453 ms
100 16 1.5 MHz 43.6907 ms
101 32 0.75 MHz 87.3813 ms

You can slow down clock by dividing it before you send it to

110 64 0.375 MHz 174.7627 ms
111 128 0.1875 MHz 349.5253 ms

the 16−bit counter. By setting prescaler bits PR2,PR1,PR0 of TSCR2 you can

bset TSCR1,#$80

staa TSCR2

TSCR1 = TSCR1 | 0x80;

To set up timer so it will overflow every 87.3813 ms:

ldaa #$05 TSCR2 = 0x05;

VCC

16−Bit Counter

TIMER OVERFLOW INTERRUPT

Prescaler
TEN

PR[2..0]

Overflow

D Q
TOF
Read

R

Write
TOF

(Bit 7 of TFLG2, addr 0x4F)

24 MHz
TCNT (addr 0x44)

(Bit 7 of TFLG2, addr 0x4F)

(Bit 7 of TSCR1, addr 0x46)

(Bits 2−0 of TSCR2, addr 0x4D)

2

EE 308 Spring 2009

Using the Timer Overflow Flag to implement a delay

• The HCS12 timer counts at a rate set by the prescaler:

PR2:0 Divide Clock Clock Overflow
Freq Period Period

000 1 24 MHz 0.042 µs 2.73 ms
001 2 12 MHz 0.083 µs 5.46 ms
010 4 6 MHz 0.167 µs 10.92 ms
011 8 3 MHz 0.333 µs 21.85 ms
100 16 1.5 MHz 0.667 µs 43.69 ms
101 32 750 kHz 1.333 µs 87.38 ms
110 64 375 kHz 2.667 µs 174.76 ms
111 128 187.5 kHz 5.333 µs 349.53 ms

• When the timer overflows it sets the TOF flag (bit 7 of the TFLG2 register).

• To clear the TOF flag write a 1 to bit 7 of the TFLG2 register, and 0 to all other bits
of TFLG2:

TFLG2 = 0x80;

• You can implement a delay using the TOF flag by waiting for the TOF flag to be set,
then clearing it:

void delay(void)

{

while ((TFLG2 & 0x80) == 0) ; /* Wait for TOF */

TFLG2 = 0x80; /* Clear flag */

}

• If the prescaler is set to 010, you will exit the delay subroutine after 10.92 ms have
passed.

• Problem: Program cannot do anything while waiting

• Solution: Have timer generate an interrupt. Program can do other things; automati-
cally switches to service interrupt when interrupt occurs

3

EE 308 Spring 2009

How to generate an interrupt when the timer overflows

Take care of event

To generate a TOF interrupt: Inside TOF ISR:

Enable interrupts (clear I bit of CCR)

Clear TOF flag (Write 1 to Bit 7 of TFLG2)
Return with RTI

Enable timer (set Bit 7 of TSCR1)
Set prescaler (Bits 2:0 of TSCR2)
Enable TOF interrupt (set Bit 7 of TSCR2)

Overflow

D

R

Interrupt
I Bit
CCR

TOI Bit

Q

VCC

16−Bit Counter

TIMER OVERFLOW INTERRUPT

Write

TOF
Read

(Enable by clearing I bit with CLI instr)

Prescaler
TEN

PR[2..0]

TOF

P Clock
24 MHz

(Bit 7 of TSCR1, addr 0x46)

(Bits 2−0 of TSCR2, addr 0x4D)

TCNT (addr 0x44)

(Bit 7 of TFLG2, addr 0x4F)

(Bit 7 of TFLG2, addr 0x4F)

TSCR2
(Bit 7 of TSCR2, addr 0x4D)

(Enable by setting Bit 7 of TSCR2)

#include "hcs12.h"

main()

{

DDRB = 0xff; /* Make Port B output */

TSCR1 = 0x80; /* Turn on timer */

TSCR2 = 0x85; /* Enable timer overflow interrupt, set prescaler */

TFLG2 = 0x80; /* Clear timer interrupt flag */

enable(); /* Enable interrupts (clear I bit) */

while (1)

{

/* Do nothing */

}

}

void INTERRUPT toi_isr(void)

{

PORTB = PORTB + 1; /* Increment Port B */

TFLG2 = 0x80; /* Clear timer interrupt flag */

}

4

EE 308 Spring 2009

How to tell the HCS12 where the Interrupt Service Routine is located

• You need to tell the HCS12 where to go when it receives a TOF interrupt

• You do this by setting the TOF Interrupt Vector

• The TOF interrupt vector is located at 0xFFDE. This is in flash EPROM, and is very
difficult to change — you would have to modify and reload DBug-12 to change it.

• DBug-12 redirects the interrupts to a set of vectors in RAM, from 0x3E00 to 0x3E7F.
The TOF interrupt is redirected to 0x3E5E. When you get a TOF interrupt, the HCS12
initially executes code starting at 0xFFDE. This code tells the HCS12 to load the pro-
gram counter with the address in 0x3E5E. Because this address in in RAM, you can
change it without having to modify and reload DBug-12.

• Because the redirected interrupt vectors are in RAM, you can change them in your
program.

5

EE 308 Spring 2009

How to Use Interrupts in Assembly Programs

• For our assembler, you can set the interrupt vector by including the file hcs12.inc. In
this file, the addresses of all of the 9212 interrupt vectors are defined.

• For example, the pointer to the Timer Overflow Interrupt vector is called UserTimerOvf:

UserTimerOvf equ $3E5E

You can set the interrupt vector to point to the interrupt service routine toi_isr

with the Assembly statement:

movw #toi_isr,UserTimerOvf

6

EE 308 Spring 2009

• Here is a program where the interrupt vector is set in the program:

#include "hcs12.inc"

prog: equ $1000

movw #toi_isr,UserTimerOvf ; Set interrupt vector

movb #$ff,DDRB ; Port B output

movb #$80,TSCR1 ; Turn on timer

movb #$86,TSCR2 ; Enable timer overflow interrupt, set prescaler

; so interrupt period is 175 ms

movb #$80,TFLG2 ; Clear timer interrupt flag

cli ; Enable interrupts

l1: wai ; Do nothing - go into low power mode */

bra l1

toi_isr:

inc PORTB

movb #$80,TFLG2 ; Clear timer overflow interrupt flag

rti

• When the MC9S12 receives a Timer Overflow Interrupt, it finishes the current instruc-
tion, puts return address and all registers on the stack, sets the I bit of the CCR to
disable interrupts, then loads the contents of UserTimerOvf (0x3E5E) into the PC

• After executing the ISR, the rti instruction pulls the registers off the stack, and loads
the PC with the return address – the program resumes from where it received the
interrupt

7

EE 308 Spring 2009

How to Use Interrupts in C Programs

• For our C compiler, you can set the interrupt vector by including the file vectors12.h.
In this file, pointers to the locations of all of the 9212 interrupt vectors are defined.

• For example, the pointer to the Timer Overflow Interrupt vector is called UserTimerOvf:

#define VECTOR_BASE 0x3E00

#define _VEC16(off) *(volatile unsigned short *)(VECTOR_BASE + off*2)

#define UserTimerOvf _VEC16(47)

The Timer Overflow vector is the 47’th vector, so it is located at

0x3E00 + (47*2) = 0x3E00 + 0x005E = 0x3E5E

You can set the interrupt vector to point to the interrupt service routine toi_isr()

with the C statement:

UserTimerOvf = (unsigned short) &toi_isr;

8

EE 308 Spring 2009

• Here is a program where the interrupt vector is set in the program:

#include <hcs12.h>

#include <vectors12.h>

#include "DBug12.h"

#define enable() _asm(" cli")

#define disable() _asm(" sei")

void INTERRUPT toi_isr(void);

main()

{

DDRB = 0xff; /* Make Port B output */

TSCR1 = 0x80; /* Turn on timer */

TSCR2 = 0x86; /* Enable timer overflow interrupt, set prescaler

so interrupt period is 175 ms */

TFLG2 = 0x80; /* Clear timer interrupt flag */

UserTimerOvf = (unsigned short) &toi_isr;

enable(); /* Enable interrupts (clear I bit) */

while (1)

{

asm(" wai"); /* Do nothing - go into low power mode */

}

}

void INTERRUPT toi_isr(void)

{

PORTB = PORTB+1;

TFLG2 = 0x80; /* Clear timer interrupt flag */

}

• The INTERRUPT keyword tells the compiler to return from the function using the rti

instruction rather than the rts instruction

9

EE 308 Spring 2009

USING INTERRUPTS ON THE HCS12

What happens when the HCS12 receives an unmasked interrupt?

1. Finish current instruction

2. Push all registers onto the stack

3. Set I bit of CCR

4. Load Program Counter from interrupt vector for particular interrupt

Most interrupts have both a specific mask and a general mask. For most interrupts the
general mask is the I bit of the CCR. For the TOF interrupt the specific mask is the TOI
bit of the TSCR2 register.

Before using interrupts, make sure to:

1. Load stack pointer

• Done for you in C by the C startup code

2. Write Interrupt Service Routine

• Do whatever needs to be done to service interrupt

• Clear interrupt flag

• Exit with RTI

– Use the INTERRUPT definition in the Gnu C compiler

3. Load address of interrupt service routine into interrupt vector

4. Do any setup needed for interrupt

• For example, for the TOF interrupt, turn on timer and set prescaler

5. Enable specific interrupt

6. Enable interrupts in general (clear I bit of CCR with cli instruction or enable()

function

Can disable all (maskable) interrupts with the sei instruction or disable() function.

10

EE 308 Spring 2009

An example of the HCS12 registers and stack when a TOF interrupt is received

A B

X

Y

SP

PC

CCR

FFE0

FFDF

FFDE

FFDD

FFDC

FFDB

FFDA

FFD9

FFD8

FFD7

FFD6

AA BB

0123

4567

07

3A

4B

52

67

79

HC12 STATE BEFORE RECEIVING TOF INTERRUPT

3C00

1015

3C00

3BFF

3BFE

3BFD

3BFC

3BFB

3BFA

3BF9

3BF8

3BF7

3BF6

10

10

10

10

10

10

11

EE 308 Spring 2009

An example of the HCS12 registers and stack just after a TOF interrupt is
received

• All of the HCS12 registers are pushed onto the stack, the PC is loaded with the contents
of the Interrupt Vector, and the I bit of the CCR is set

A B

X

Y

SP

PC

CCR

FFE0

FFDF

FFDE

FFDD

FFDC

FFDB

FFDA

FFD9

FFD8

FFD7

FFD6

AA BB

0123

4567

17

HC12 STATE AFTER RECEIVING TOF INTERRUPT

3A

4B

52

67

79

A

Y

X

B

A

CCR

Return
Address

67

45

23

01

AA

BB

07

15

10

10

10

10

10

10

10

103A

3BF6

3BF7

3BF8

3BF9

3BFA

3BFB

3BFC

3BFD

3BFE

3BFF

3C00

3BF7

12

EE 308 Spring 2009

Interrupt vectors for the 68HC912B32

• The interrupt vectors for the MC9S12DP256 are located in memory from 0xFF80 to
0xFFFF.

• These vectors are programmed into Flash EEPROM and are very difficult to change

• DBug12 redirects the interrupts to a region of RAM where they are easy to change

• For example, when the HCS12 gets a TOF interrupt:

– It loads the PC with the contents of 0xFFDE and 0xFFDF.

– The program at that address tells the HCS12 to look at address 0x3E5E and
0x3E5F.

– If there is a 0x0000 at these two addresses, DBug12 gives an error stating that the
interrupt vector is uninitialized.

– If there is anything else at these two addresses, DBug12 loads this data into the
PC and executes the routine located there.

– To use the TOF interrupt you need to put the address of your TOF ISR at ad-
dresses 0x3E5E and 0x3E5F.

13

EE 308 Spring 2009

Commonly Used Interrupt Vectors for the MC9S12DP256

Interrupt Specific General Normal DBug-12
Mask Mask Vector Vector

SPI2 SP2CR1 (SPIE, SPTIE) I FFBC, FFBD 3E3C, 3E3D
SPI1 SP1CR1 (SPIE, SPTIE) I FFBE, FFBF 3E3E, 3E3F
IIC IBCR (IBIR) I FFC0, FFC1 3E40, 3E41
BDLC DLCBCR (IE) I FFC2, FFC3 3E42, 3E43
CRG Self Clock Mode CRGINT (SCMIE) I FFC4, FFC5 3E44, 3E45
CRG Lock CRGINT (LOCKIE) I FFC6, FFC7 3E46, 3E47
Pulse Acc B Overflow PBCTL (PBOVI) I FFC8, FFC9 3E48, 3E49
Mod Down Ctr UnderFlow MCCTL (MCZI) I FFCA, FFCB 3E4A, 3E4B
Port H PTHIF (PTHIE) I FFCC, FFCD 3E4C, 3E4D
Port J PTJIF (PTJIE) I FFCE, FFCF 3E4E, 3E4F
ATD1 ATD1CTL2 (ASCIE) I FFD0, FFD1 3E50, 3E51
ATD0 ATD0CTL2 (ASCIE) I FFD2, FFD3 3E52, 3E53
SCI1 SC1CR2 I FFD4, FFD5 3E54, 3E55

(TIE, TCIE, RIE, ILIE)
SCI0 SC0CR2 I FFD6, FFD7 3E56, 3E57

(TIE, TCIE, RIE, ILIE)
SPI0 SP0CR1 (SPIE) I FFD8, FFD9 3E58, 3E59
Pulse Acc A Edge PACTL (PAI) I FFDA, FFDB 3E5A, 3E5B
Pulse Acc A Overflow PACTL (PAOVI) I FFDC, FFDD 3E5C, 3E5D
Enh Capt Timer Overflow TSCR2 (TOI) I FFDE, FFDF 3E5E, 3E5F
Enh Capt Timer Channel 7 TIE (C7I) I FFE0, FFE1 3E60, 3E61
Enh Capt Timer Channel 6 TIE (C6I) I FFE2, FFE3 3E62, 3E63
Enh Capt Timer Channel 5 TIE (C5I) I FFE4, FFE5 3E64, 3E65
Enh Capt Timer Channel 4 TIE (C4I) I FFE6, FFE7 3E66, 3E67
Enh Capt Timer Channel 3 TIE (C3I) I FFE8, FFE9 3E68, 3E69
Enh Capt Timer Channel 2 TIE (C2I) I FFEA, FFEB 3E6A, 3E6B
Enh Capt Timer Channel 1 TIE (C1I) I FFEC, FFED 3E6C, 3E6D
Enh Capt Timer Channel 0 TIE (C0I) I FFEE, FFEF 3E6E, 3E6F
Real Time CRGINT (RTIE) I FFF0, FFF1 3E70, 3E71
IRQ IRQCR (IRQEN) I FFF2, FFF3 3E72, 3E73
XIRQ (None) X FFFF, FFFF 3E74, 3E75
SWI (None) (None) FFF6, FFF7 3E76, 3E77
Unimplemented Instruction (None) (None) FFF8, FFF9 3E78, 3E79
COP Failure COPCTL (None) FFFA, FFFB 3E7A, 3E7B

(CR2-CR0 COP Rate Select)
COP Clock Moniotr Fail PLLCTL (CME, SCME) (None) FFFC, FFFD 3E7C, 3E7D
Reset (None) (None) FFFE, FFFF 3E7E, 3E7F

14

EE 308 Spring 2009

EXCEPTIONS ON THE HCS12

• Exceptions are the way a processor responds to things other than the normal sequence
of instructions in memory.

• Exceptions consist of such things as Reset and Interrupts.

• Interrupts allow a processor to respond to an event without constantly polling to see
whether the event has occurred.

• On the HCS12 some interrupts cannot be masked — these are the Unimplemented
Instruction Trap and the Software Interrupt (SWI instruction).

• XIRQ interrupt is masked with the X bit of the Condition Code Register. Once the X
bit is cleared to enable the XIRQ interrupt, it cannot be set to disable it.

– The XIRQ interrupt is for external events such as power fail which must be re-
sponed to.

– The Dragon12-Plus board uses the XIRQ interrupt so you can abort out of a
program which is running in an infinite loop

• The rest of the HCS12 interrupts are masked with the I bit of the CCR.

– All these other interrupts are also masked with a specific interrupt mask. For
example, the Timer Overflow Interrupt is masked with the TOI bit of the TMSK2
register.

– This allows you to enable any of these other interrupts you want.

– The I bit can be set to 1 to disable all of these interrupts if needed.

15

EE 308 Spring 2009

USING INTERRUPTS ON THE HCS12

What happens when the HCS12 receives an unmasked interrupt?

1. Finish current instruction

2. Push all registers onto the stack

3. Set I bit of CCR

4. Load Program Counter from interrupt vector for particular interrupt

Most interrupts have both a specific mask and a general mask. For most interrupts the
general mask is the I bit of the CCR. For the TOF interrupt the specific mask is the TOI
bit of the TSCR2 register.

Before using interrupts, make sure to:

1. Load stack pointer

• Done for you in C by crts.s

2. Write Interrupt Service Routine

• Do whatever needs to be done to service interrupt. Keep it short — do not do
things which take a long time, such as a printf(), or wait for some external event.

• Clear interrupt flag

• Exit with RTI

– Use the @interrupt function of the Cosmic C compiler

3. Load address of interrupt service routine into interrupt vector

4. Do any setup needed for interrupt

• For example, for the TOF interrupt, turn on timer and set prescaler

5. Enable specific interrupt

6. Enable interrupts in general (clear I bit of CCR with cli instruction or enable()

function

Can disable all (maskable) interrupts with the sei instruction or disable() function.

16

