
EE 308 Spring 2009

The MC9S12 Output Compare Function

;

PORTA = PORTA & ~BIT0;

while (TCNT != T) ;

PORTA = PORTA | BIT0;

Want event to happen at a certain time

Want to produce pulse pulse with width T

PA0

T

while (TCNT != 0x0000) ;

Wait until TCNT == 0x0000, then bring PA0 high

Wait until TCNT == T, then bring PA0 low

1

EE 308 Spring 2009

Want to produce pulse pulse with width T

PA0

T

while (TCNT != 0x0000) ;

while (TCNT != T) ;

PORTA = PORTA | BIT0;

PORTA = PORTA & ~BIT0;

Want event to happen at a certain time

3) Cannot do anything else while waiting

Wait until TCNT == 0x0000, then bring PA0 high

Wait until TCNT == T, then bring PA0 low

2) Time not exact −− software delays

Problems:

1) May miss TCNT == 0x0000 or TCNT == T

2

E
E

308
S
p
rin

g
2009

Want event to happen at a certain time

Want to produce pulse pulse with width T

T

TCNT

0x0000

CMP

CMP

T

PT0

PT0CLK

When TCNT == 0x0000, the output goes high
When TCNT == T, the output goes low

=

=

S Q
R

Now pulse is exaclty T cycles long

3

E
E

308
S
p
rin

g
2009

D Q

VCC

Write

Read

TFLG1

TFLG1

Register

TCNT

16 Bit Counter

COMPARATOR

16 Bit

D Q

OUTPUT COMPARE PORT T 0−7
To use Output Compare, you must set IOSx to 1 in TIOS

11 => VCC

10 => GND
01 => Q

00 => Not Used

OMx OLx (TCTL 1:0)

TCx
Interrupt

I Bit

CCR

CxI

CxF

PTx Pin

Write time you want event

to happen to TCx Register

Tell HC12 what type

of event you want

TIE

CxF

Time Clock

Set rate with prescaler

Enable with TEN

PTT

4

EE 308 Spring 2009

The MC9S12 Output Compare Function

• The MC9S12 allows you to force an event to happen on any of the eight PTT pins

• An external event is a rising edge, a falling edge, or a toggle

• To use the Output Compare Function:

– Enable the timer subsystem (set TEN bit of TSCR1)

– Set the prescaler

– Tell the MC9S12 that you want to use Bit x of PTT for output compare

– Tell the MC9S12 what you want to do on Bit x of PTT (generate rising edge, falling
edge, or toggle)

– Tell the MC9S12 what time you want the event to occur

– Tell the MC9S12 if you want an interrupt to be generated when the event is forced
to occur

• There are some more complicated features of the output compare subsystem which are
activated using registers CFORC, OC7M, OC7D and

• Writing a 1 to the corresponding bit of CFORC forces an output compare event to occur,
the same as if a successful comparison has taken place (Section 8.6.5 of Huang).

• Using OC7M and OC7D allow Timer Channel 7 to control multiple output compare func-
tions (Section 8.6.4 of Huang).

• Using TTOV allows you to toggle an output compare pin when TCNT overflows. This
allows you to use the output compare system to generate pulse width modulated signals.

• We will not discuss these advanced features in this class.

5

EE 308 Spring 2009

TSWAI TSBCK TFFCA

TOI TCRE PR2 PR1 PR0

PR2 PR1 PR0

0

0 1

1 0

1 1

0

0

0 1

1 0

1 1

0

0

0

0

0

1

1

1

1

Period Overflow

(s) (ms)µ

TEN

0

Write a 1 to Bit 7 of TSCR1 to turn on timer

To turn on the timer subsystem: TSCR1 = 0x80;

0x0046 TSCR1

Set the prescaler in TSCR2

0x004D TSCR2 0 0

0.0416

0.0833

0.1667

0.3333

0.6667

1.3333

2.6667

5.3333

2.73

 5.46

10.92

21.84

 43.69

 86.38

174.76

349.53

To have overflow rate of 21.84 ms:

TSCR2 = 0x03;

Make sure the overflow time is greater than the width of the pulse

 you want to generate

6

EE 308 Spring 2009

TCTL1 = (TCTL1 | BIT0) & ~BIT1;

IOS7 IOS6 IOS5 IOS4 IOS3 IOS2 IOS1 IOS0 0x0080 TIOS

0 0

0 1

1 0

1 1

Write a 1 to the bits of TIOS to make those pins output compare

To make Pin 4 an output compare pin: TIOS = TIOS | 0X10;

Write to TCTL1 and TCTL2 to choose action to take

OM7 OL7 OM6 OL6 OM5 OL5 OM4 OL4

OM3 OL3 OM2 OL2 OM1 OL1 OM0 OL0

OMn OLn To have Pin 4 toggle on compare:

Disconnected

Toggle

Clear

Set

Configuration

0x0048 TCTL1

0x0049 TCTL2

To enable interrupt when TCNT == TC4: TIE = TIE | BIT4;

C4I C2IC5IC7I C6I C3I C1I C0I

To clear the flag, write a 1 to the bit you want to clear (0 to all others)

To enable interrupt when compare occurs, set corresponding

Write time you want event to occur to TCn register.

To have event occur on Pin 4 when TCNT == 0x0000: TC4 = 0x0000;

To have next event occur T cycles after last event, add T to TCn.

To have next event occur on Pin 4 500 cycles later: TC4 = TC4 + 500;

When TCNT == TCn, the specified action will occur, and flag CFn will be set.

CF7 CF6 CF4 CF3 CF2 CF0CF5 CF1 0x004E TFLG1

bit in TIE register

0x004C TIE

To wait until TCNT == TC4: while ((TFLG1 & BIT4) == 0) ;

To clear flag bit for Pin 4: TFLG1 = BIT4;

7

EE 308 Spring 2009

USING OUTPUT COMPARE ON THE MC9S12

1. In the main program:

(a) Turn on timer subsystem (TSCR1 reg)

(b) Set prescaler (TSCR2 reg)

(c) Set up PTx as OC (TIOS reg)

(d) Set action on compare (TCTL 1-2 regs, OMx OLx bits)

(e) Clear Flag (TFLG1 reg)

(f) Enable int (TIE reg)

2. In interrupt service routine

(a) Set time for next action to occur (write TCx reg)

• For periodic events add time to TCx register

(b) Clear flag (TFLG1 reg)

8

EE 308 Spring 2009

Setting and Clearing Bits in the Timer Subsystem

• Registers in the timer subsystem control multiple timer channels.

– Usually, you want to use ANDS and ORS to change only that channel you are
working on.

– For example, to make Channel 2 an output compare, and set it to toggle on
compare, do this:

TIOS = TIOS | BIT2; /* Configure PT2 as Output Compare */

TCTL2 = (TCTL2 | BIT4) & ~BIT5; /* Set up PT2 to toggle on compare */

– Do not do this:

TIOS = BIT2; /* Configure PT2 as Output Compare */

TCTL2 = BIT4); /* Set up PT2 to toggle on compare */

This would set up Channel 2 as an output compare, toggle on successful compare.
However, it will force all the other channels to input capture – this may not be
what you want to do.

• To clear a flag bit, do not use ORs!

– To clear Timer Channel 2 flag, do the following:

TFLG1 = BIT2;

This will clear Timer Channel 2 flag, and leave all other flags unaffected.

– Do not do this:

TFLG1 = TFLG1 | BIT2; /* DO NOT DO THIS */

This will clear Timer Channel 2 flag, but will also clear any other flag which is set.

Suppose, for example, Timer Channel 2 and Timer Channel 3 flags are both set
at the same time, so TFLG1 register is 0x0C. You want to deal the Timer Channel
2 first and Timer Channel 3 afterwards.

The command:

TFLG1 = TFLG1 | BIT2; /* DO NOT DO THIS */

will read TFLG1, which will return an 0x0C. ORing that with a 0x04 (BIT2) will
result in an 0x0C. Writing that back to TFLG1 will clear Timer Channel 2 flag and
Timer Channel 3 flag. Now Timer Channel 3 flag is cleared, so you will never deal
with the event which set Timer Channel 3 flag.

9

EE 308 Spring 2009

/*

* Program to generate square wave on PT2

* Frequency of square wave is 500 Hz

* Period of square wave is 2 ms

* Set prescale to give 0.667 us cycle

* 2 ms is 3,000 cycles of 1.5 MHz clock

*

*/

#include "hcs12.h"

#include "vectors12.h"

#define PERIOD 3000

#define HALF_PERIOD (PERIOD/2)

#define disable() asm(" sei")

#define enable() asm(" cli")

void INTERRUPT toc2_isr(void);

main()

{

disable();

TSCR1 = BIT7; /* Turn on timer subsystem */

TSCR2 = 0x04; /* Set prescaler to 16 (0.666 us) */

TIOS = TIOS | BIT2; /* Configure PT2 as Output Compare */

TCTL2 = (TCTL2 | BIT4) & ~BIT5; /* Set up PT2 to toggle on compare */

TFLG1 = BIT2; /* Clear Channel 2 flag */

/* Set interrupt vector for Timer Channel 2 */

UserTimerCh2 = (unsigned short) &toc2_isr;

TIE = TIE | BIT2; /* Enable interrupt on Channel 2 */

enable();

while (1)

{

asm("wai");

}

}

void INTERRUPT toc2_isr(void)

{

TC2 = TC2 + HALF_PERIOD;

TFLG1 = BIT2;

}

10

EE 308 Spring 2009

Pulse Width Modulation

• Often want to control something by adjusting the percentage of time the object is
turned on

• For example,

– A DC motor — the higher the percentage, the faster the motor goes

– A light – the higher the percentage, the brighter the light

– A heater – the higher the percentage, the more heat output

• Can use Output Compare to generate a PWM signal

• Because PWM is used so often the MC9S12 has a built-in PWM system

• The PWM system on the MC9S12 is very flexible

– It allows you to set a wide range of PWM frequencies

– It allows you to generate up to 8 separate PWM signals, each with a different
frequency

– It allows you to generate 8-bit PWM signals (with 0.5% accuracy) or 16-bit PWM
signals (with 0.002% accuracy)

– It allows you to select high polarity or low polarity for the PWM signal

– It allows you to use left-aligned or center-aligned PWM signals

• Because the MC9S12 PWM systes is so flexible, it is fairly complicated to program

• To simplify the discussion we will only discuss 8-bit, left-aligned, high-polarity PWM
signals.

11

E
E

308
S
p
rin

g
2009

 The HC12 sets the PWM period by counting from 0 to some maximum count

% High

Period

Need a way to set the PWM period and duty cycle

 with a special PWM clock

 Once the PWM period is selected, the PWM duty cycle is set by telling the

 HC12 how many counts it should keep the signal high for

 PWM Duty Cycle = (Count High + 1)/(Max Count + 1)

 PWM Period = PWM Clock Period x (Max Count + 1)

Pulse Width Modulation

 The hard part about PWM on the HC12 is figuring out how to set the PWM Period

12

