Using the HCS12 PWM

1. Choose 8-bit mode (PWMCTL = 0x00)
2. Choose high polarity (PWMPOL = 0xFF)
3. Choose left-aligned (PWMCAE = 0x00)
4. Select clock mode in PWMCLK:
 - PCLKn = 0 for 2^N,
 - PCLKn = 1 for $2^{(N+1)} \times M$,
5. Select N in PWMPRCLK register:
 - PCKA for channels 5, 4, 1, 0;
 - PCKB for channels 7, 6, 3, 2.
6. If PCLKn = 1, select M
 - PWMSCLA = M for channels 5, 4, 1, 0
 - PWMSCLB = M for channels 7, 6, 3, 2.
7. Select PWMPERn, normally between 100 and 255.
8. Enable desired PWM channels: PWME.
9. Select PWMDTYn, normally between 0 and PWMPERn. Then
 \[
 \text{Duty Cycle } n = \frac{\text{PWMDTY}n}{\text{PWMPER}n} \times 100\%
 \]
 Change duty cycle to control speed of motor or intensity of light, etc.
10. For 0% duty cycle, choose PWMDTYn = 0x00.
Finding the Values to Set Up the PWM Clock

1. Find the number of 24 MHz clock cycles needed for desired PWM frequency:

\[
\text{Cycles} = \frac{24 \times 10^6}{\text{PWM Frequency}}
\]

2. Choose a value for PWMPERx, typically between 100 and 255
 - To get an exact frequency, PWMPERx must divide evenly into the number of cycles found in 1.

3. Find the PWM clock period:

\[
\text{PWM Clock Period} = \frac{\text{Total Cycles}}{\text{PWMPERx}}
\]

4. Use either Clock Mode 0 or Clock Mode 1:
 (a) Clock Mode 0: Find \(N\) such that \(2^N = \text{PWM Clock Period}\)
 (b) Clock Mode 1: Find \(M\) and \(N\) such that \(2^{N+1} \times M = \text{PWM Clock Period}\).

Suppose you want a 500 Hz PWM frequency. Then:

\[
\text{Cycles} = \frac{24 \times 10^6}{500} = 48,000
\]

Let’s use PWMPERx = 250. Then

\[
\text{PWM Clock Period} = \frac{48,000}{250} = 192
\]

Because 192 is not a power of two, we cannot use Clock Mode 0 to get an exact frequency. For Clock Mode 1, we want

\[
192 = 2^{N+1} \times M
\]

We could do this with \(N = 0\) and \(M = 96\), \(N = 1\) and \(M = 48\), \(N = 2\) and \(M = 24\), and several other combinations.
Program to use the MC9S12 PWM System

/*
 * Program to generate a 500 Hz PWM on
 * on Port P Bits 0 and 1
 *
 * To get 500 Hz, 24,000,000 /500 = 48,000
 *
 * Choose PWMPERx = 200, then 48,000/200 = 240 = 2^4 x 3 x 5
 *
 * Lots of ways to set up PWM to achieve this. One way is 2^1 x 120
 * Choose Clock Mode 1, PCKA = 0, N = 0, PWMSCLA = 120
 *
 */
#include "hcs12.h"

main()
{
 /* Choose 8-bit mode */
 PWMCTL = 0x00;
 /* Choose left-aligned */
 PWMCAE = 0x00;
 /* Choose high polarity on all channels */
 PWMPOL = 0xFF;
 /* Select clock mode 1 for Channels 1 and 0 (no PWMSCLA) */
 PWMCLK = PWMCLK | (BIT1 | BIT0);
 /* Select PCKA = 0 for Channels 1 and 0 */
 PWMPRCLK = (PWMPRCLK & ~0x7);
 /* Select PWMSCLA = 96 for Channels 1 and 0 */
 PWMSCLA = 96;
 /* Select period of 200 for Channels 1 and 0 */
 PWMPER1 = 200;
 PWMPER0 = 200;
 /* Enable PWM on Channels 1 and 0 */
 PWME = PWME | 0x03;

 PWMDTY1 = 100; /* 50% duty cycle on Channel 1 */
 PWMDTY0 = 50; /* 25% duty cycle on Channel 0 */

 while (1)
 {
 /* Code to adjust duty cycle to meet requirements */
 }
}
Analog/Digital Converters

• An Analog-to-Digital (A/D) converter converts an analog voltage into a digital number.

• There are a wide variety of methods used for A/D converters. Examples are:
 – Flash (Parallel)
 – Successive Approximation
 – Sigma-Delta
 – Dual Slope Converter

• A/D converters are classified according to several characteristics:
 – Resolution (number of bits) — typically 8 bits to 24 bits
 – Speed (number of samples per second) — several samples/sec to several billion samples/sec
 – Accuracy — how much error there is in the conversion

• High-resolution converters are usually slower than low-resolution converters.

• The MC9S12 has a 10-bit successive approximation A/D converter (which can be used in 8-bit mode).

• The MC9S12 uses an analog multiplexer to allow eight input pins to connect to the A/D converter.
Comparator

- A comparator is used in many types of A/D converters.
- A comparator is the simplest interface from an analog signal to a digital signal
- A comparator compares two voltage values on its two inputs
- If the voltage on the + input is greater than the voltage on the - input, the output will be a logic high
- If the voltage on the + input is less than the voltage on the - input, the output will be a logic low

\[
\begin{align*}
\text{If } V_{\text{in}} > V_{\text{ref}} & \text{ then } V_{\text{out}} = V_{\text{cc}} \\
\text{If } V_{\text{in}} < V_{\text{ref}} & \text{ then } V_{\text{out}} = 0
\end{align*}
\]
Flash (Parallel) A/D Converter

• A flash A/D converter is the simplest to understand
• A flash A/D converter compares an input voltage to a large number of reference voltages
• An n-bit flash converter uses $2^n - 1$ comparators
• The output of the A/D converter is determined by which of the two reference voltages the input signal is between,
• Here is a 3-bit A/D converter

![Diagram of a 3-bit flash A/D converter]
Flash A/D Converter

- A B-bit Flash A/D converter requires $2^B - 1$ comparators
- An 8-bit Flash A/D requires 255 comparators
- A 12-bit Flash A/D converter would require 4,095 comparators
 - Cannot integrate 4,095 comparators onto an IC
- The largest flash A/D converter is 8 bits
- Flash A/D converters can sample at several billion samples/sec
A/D Converter Resolution and Quantization

- If the voltage input voltage is 3.2516 V, the lowest 5 comparators will be turned on, and the highest 2 comparators will be turned off
- The output of the 3-bit flash A/D converter will be 5 (101)
- For a 3-bit A/D converter, which has a range from 0 to 5 V, an output of 5 indicates that the input voltage is between 3.125 V and 3.750 V
- A 3-bit A/D converter with a 5 V input range has a quantization value of 0.625 V
- The quantization value of an A/D converter can be found by
 \[\Delta V = \frac{V_{RH} - V_{RL}}{2^b} \]
 where \(V_{RH} \) is the highest voltage the A/D converter can handle, \(V_{RL} \) is the lowest voltage the A/D converter can handle, and \(b \) is the number of bits of the A/D converter
- The MC9S12 has a 10-bit A/D converter. The typical voltage range used for the MC9S12 A/D is \(V_{RH} = 5 \) V and \(V_{RL} = 0 \) V, so the MC9S12 has a quantization value of
 \[\Delta V = \frac{5 \text{ V} - 0 \text{ V}}{2^{10}} = 4.88 \text{ mV} \]
- The dynamic range of an A/D converter is given in decibels (dB):
 \[DR(\text{dB}) = 20 \log 2^b = 20 \log 2 = 6.02 \text{b} \]
- A 10-bit A/D converter has a dynamic range of
 \[DR(\text{dB}) = 6.02 \times 10 = 60.2 \text{ dB} \]
A/D Sampling Rate

- The rate at which you sample a signal depends on how rapidly the signal is changing
- If you sample a signal too slowly, the information about the signal may be inaccurate
A 1050 Hz signal sampled at 500 Hz
- A 1,050 Hz signal sampled at 500 Hz looks like a 50 Hz signal
- To get full information about a signal you must sample more than twice the highest frequency in the signal
- Practical systems typically use a sampling rate of at least four times the highest frequency in the signal
Digital-to-Analog (D/A) Converters

- Many A/D converters use a D/A converter internally
- A D/A converter converts a digital signal to an analog voltage or current
- To understand how most A/D converters work, it is necessary to understand D/A converters
- The heart of a D/A converter is an inverting op amp circuit
- The output voltage of an inverting op amp circuit is proportional to the input voltage:
Digital-to-Analog (D/A) Converters

- An inverting op amp can produce an output voltage which is a linear combination of several input voltages
Digital-to-Analog (D/A) Converters

- By using input resistors which scale by factors of 2, a summing op amp can produce an output which follows a binary pattern.

\[V_{\text{out}} = \frac{-R_F}{R_0} \left[V_{\text{Ref}} - \frac{2R_F}{R_0} V_{\text{Ref}} - \frac{4R_F}{R_0} V_{\text{Ref}} - \frac{8R_F}{R_0} V_{\text{Ref}} \right] \]

\[= \frac{-R_F}{R_0} \left[V_{\text{Ref}} + 2V_{\text{Ref}} + 4V_{\text{Ref}} + 8V_{\text{Ref}} \right] \]

\[= \frac{-R_F}{R_0} V_{\text{Ref}} \left[1 + 2 + 4 + 8 \right] \]
Digital-to-Analog (D/A) Converters

- By using switches on the input resistors, a summing op amp can produce an output which is a binary number (representing which switches are closed) times a reference voltage.

4-Bit Digital-to-Analog Converter

\[V_{out} = \frac{-R_F}{R_0} V_{Ref} \]

\[B = B_3 B_2 B_1 B_0 \]

\[V_{out} = \frac{-R_F}{R_0} \left(B_0 + 2 B_1 + 4 B_2 + 8 B_3 \right) V_{Ref} \]
Slope A/D Converter

- A simple A/D converter can be constructed with a counter and a D/A converter
- The counter counts from 0 to 2^b-1
- The counter drives the input of the D/A converter
- The output of the D/A converter is compared to the input voltage
- When the output of the comparator switches logic level, the generated voltage passed the input voltage
- By latching the output of the counter at this time, the input voltage can be determined (with the accuracy of the quantization value of the converter)
- Problem with Slope A/D converter: Takes 2^b clock cycles to test all possible values of reference voltages
SLOPE A/D CONVERTER

N Clock Cycles per Conversion

V_{in}

D/A

CLK

V

D/A

Latch Here

Time

V_{in}

Latch Here
Successive Approximation A/D Converter

- A successive approximation (SA) A/D converter uses an intelligent scheme to determine the input voltage
- It first tries a voltage halfway between V_{RH} and V_{RL}
- It determines if the signal is in the lower half or the upper half of the voltage range
 - If the input is in the upper half of the range, it sets the most significant bit of the output
 - If the input is in the lower half of the range, it clears the most significant bit of the output
- The first clock cycle eliminates half of the possible values
- On the next clock cycle, the SA A/D tries a voltage in the middle of the remaining possible values
- The second clock cycle allows the SA A/D to determine the second most significant bit of the result
- Each successive clock cycle reduces the range another factor of two
- For a B-bit SA A/D converter, it takes B clock cycles to determine the value of the input voltage
SUCCESSIVE APPROXIMATION A/D CONVERTER

N Clock Cycles per Conversion

Start
Clk
A/D Value
Conversion Complete
LATCH
A/D Value

V in

+ -

D/A

High/Low
Successive Approximation Register

V

100000
110000
101000
100100
100110
100111
100110

19
Successive Approximation A/D Converter

- An SA A/D converter can give the wrong output if the voltage changes during a conversion.
- An SA A/D converter needs an input buffer which holds the input voltage constant during the conversion.
- This input buffer is called a Track/Hold or Sample/Hold circuit.
- It usually works by charging a capacitor to the input voltage, then disconnecting the capacitor from the input voltage during conversion.
- The voltage on the capacitor remains constant during conversion.
- The MC9S12 has a Track/Hold amplifier built in.
- SA A/D converters have resolutions of up to 16 bits.
- SA A/D converters have speeds up to several million samples per second.