
EE 308 Spring 2009

Lab on IIC Bus

• Next week’s lab

1. Communicate with Dallas Semiconductor DS 1307 Real Time Clock

(a) Set time and date in clock

(b) Read time and date from clock and display

2. Display time and date on LCD display

• Hardest program this semester

• Need to use functions

• How to write to LCD display done for you

– Program eg07_08.c on textbook CD-ROM

char msg[] = "hello, world!";

openlcd();

puts2lcd(msg);

• Need to write functions to write to and read from RTC over the IIC bus

• Notes from March 23 have functions to initialize IIC bus, start a transfer by writing
address and R/W bit, transmit a byte of data, and stop the transfer (release IIC bus).

• Need functions to switch to receive mode (iic_swrcv()) and receive data over IIC bus
(iic_receive).

• Need to put functions together to write to the RTC, read from the RTC, and display
the time/date on the LCD display

• To write data to LCD display, data has to be in the form of an ASCII string

• Data from RTC is in form of BCD data

• For example, year is 0x09

msg[0] = ((year>>4)&0x0f) + ’0’;

msg[1] = ((year)&0x0f) + ’0’;

msg[2] = ’/’;

...

msg[8] = 0;

1

EE 308 Spring 2009

Lab on IIC Bus

• When receiving multiple bytes from slave, need to send NACK after last byte in order
to tell slave to release bus.

– If you don’t do this, slave will hold onto bus, and you cannot take over bus for
next operation

• Look at the flow chart on Page 39 of the IIC manual to see what to do

• I have three receive functions:

1. iic_receive(): Used for receiving all but last two bytes

– Waits for IBIF flag to set, indicating new data

– Clears IBIf after it has been set

– Reads data from IBDR, which starts next read

2. iic_receive_m1(): Used for receiving next to last byte

– Does same thing as iic_receive(), except before reading data from IBDR,
it sets the TXAK bit so there will be no ACK sent on reading the last byte

3. iic_receive_last(): Used for receiving last byte

– Waits for IBIF flag to set, indicating new data

– Clears IBIf after it has been set

– Clears TXAK bit so ACK is re-enabled

– Clears MS/SL bit to generate a STOP bit

– Sets Tx/Rx bit so MC9S12 will not start SCLK to receive another byte after
reading from IBDR.

– Reads data from IBDR

2

E
E

308
S
p
rin

g
2009

MICROPROCESSOR

MEMORY

PRINCETON (VON NEUMAN) ARCHITECTURE

STATUS

OUT

IN
CONTROL

CLOCK

CONTROL
ALU

DATA

INSTRUCTION & ADDR
CONTROL

3

EE 308 Spring 2009

Inst

Addr_Mux_Sel

ALU_Ctrl

Z_Load

C_Load

V_Load

A_Load

X_Load

Control

PC_Load

PC_Inc

N

V

C

Z

N_Load

Mem_W

ALU

Z

Addr_Mux

A

X

PC

MAR

IR

VC

Address

N

Memory

Data_MuxData_Mux_Sel

Processor

0xFF Reset Vector

Input

Output

IR_Load

MAR_Load

4

EE 308 Spring 2009

MEMORY

ADDR(N Bits)

DATA(M Bits)

CONTROL

COMPUTER

Computer with N bit address bus can access

Control lines tell memory when computer wants

N2 bytes of data

Computer with M bit data bus can access
M bits of data in one memory cycle

to read (write) data, and if access is read or write

location computer wants to read (write)
Value on address bus tells memory which

5

EE 308 Spring 2009

E tells memory when MC9S12 is reading (writing) −−

MEMORY

ADDR(16)

E

R/W

DATA(16)

LSTRB

1024 bytes = 1 kB

65536 bytes = 64 kB

at a time

For example, the instruction LDX $0900
will read the two bytes at address $0900 and $0901

R/W high => read
R/W low => write

 synchronizes data accesses

MCHCS12

MCHCS12 has 16 bit address bus − can access 65536 bytes

MCHCS12 has 16 bit data bus − can access 16 bits (2 bytes)

Sometimes MC9S12 only accesses one byte −− e.g., LDAA $0900
 The MC9S12 accesses only the byte at address $0900

R/W tells memory if MC9S12 is reading or writing

LSTRB tells memory if MC9S12 accessing one or two bytes

6

EE 308 Spring 2009

Address, Data and Control Buses

• A microprocessor system uses address, data and control buses to communicate with
external memory and memory-mapped peripherals

• The address bus determines which memory location to access

• The control bus specifies whether the memory cycle is a read (into microprocessor) or
a write (out of microprocessor) cycle, and specifies timing information for the cycle

• The data bus contains the data being transfered during the memory cycle

• For example, consider the following simple 9S12 program, which continuously incre-
ments the contents of address 0x0400:

org 0x2000

loop: inc 0x0400

bra loop

– The program is stored in memory starting at memory location 0x2000

– The 9S12 Program Counter starts at address 0x2000

– The 9S12 reads the first instruction, inc 0x0400, located in address 0x2000

through 0x2002

– The 9S12 then reads the contents of memory location 0x0400, takes an internal
memory cycle to increment the value, then writes the new value out to address
0x0400

– The 9S12 then reads the next instruction, bra 0x2000

– The 9S12 takes one memroy cycle to load the program counter with the new value
of 0x2000, and to clear its internal pipeline, then reads the instruction at 0x2000
to figure out what to do next

7

E
E

308
S
p
rin

g
2009

The 9S12 address, data and control buses (simplified)

• Note: The following diagram assumes that the 9S12 accesses one byte at a time

• The 9S12 actually accesses two bytes (16 bits) at a time, when it can

• What actually occurs on the 9S12 bus is a little more complicated than what is shown below

2004: FB

2001: 04
2000: 72

2002: 00
2003: 20

ADDR

DATA

R/W

2000 2001 2002 FFFF 2003 2004

A3 00 A4 20 FB

 .org 0x2000

 bra loop

2000FFFF

0072 00 72

loop: inc 0x0400

04

0400 0400

bra 0x2000

inc 0x0400

MC9S12 ADDRESS, DATA AND CONTROL BUS (SIMPLIFIED)

8

EE 308 Spring 2009

The 9S12 Memory Map

• The 9S12 has address regions occupied by internal memory and peripherals

• A diagram showing which address regions are used is called a memory map

• Here is a memory map of the 9S12DP256 with no added memory or peripherals

0x0000

0x03FF
0x0400

0x0FFF

0x1000

0x3BFF

0x3C00
0x3FFF

0x4000

0x7FFF

0x8000

0xBFFF

0xC000

0xFFFF EEPROM

EEPROM

EEPROM

Flash

Flash

Flash

D−Bug 12
RAM

RAM

Registers

User

EEPROM

Banked

D−Bug 12

3 KB

1 KB

16 KB

1 KB

11 KB

16 KB

16 KB

9

EE 308 Spring 2009

The Expanded 9S12 Memory Map

• We will add external peripherals to the 9S12

• Here is a memory map of the MC9S12DP256 with the peripherals we will add

• The peripherals will be put at 0x4054 and 0x4055

0x0000

0x03FF
0x0400

0x0FFF

0x1000

0x3BFF

0x3C00
0x3FFF

0x4000

0x7FFF

0x8000

0xBFFF

0xC000

0xFFFF EEPROM

EEPROM

Flash

Flash

D−Bug 12
RAM

RAM

Registers

User

EEPROM

Banked

D−Bug 12

3 KB

1 KB

1 KB

11 KB

16 KB

16 KB

Space
Unused Use address 0x4000 − 0x4001

for external peripherals

10

EE 308 Spring 2009

Simplified 9S12 Write Cycle

• When the 9S12 writes data to memory it does the following:

– It puts the address it wants to write to on the address bus (when E-clock goes
low)

– It puts the data it wants to write onto the data bus

– It brings the Read/Write (R/W) line low to indicate a write

– The 9S12 expects the external device at the given address will latch the data into
its registers data on the falling edge of the E-clock

WRITE: MC9S12 puts address on address bus

ADDR(16)

R/W

MEMORY

 Memory latches data on falling edge of E clock

E

R/W

ADDR

DATA 0xfedc

DATA(16)

Example: Write 0xfedc to address 0x3456 & 3457

0x3456

E

LSTRB

 puts data on data bus

 brings R/W low

MC9S12

11

EE 308 Spring 2009

Simplified 9S12 Read Cycle

• When the 9S12 reads data from memory it does the following:

– It puts the address it wants to read from on the address bus (when E-clock goes
low)

– It brings the Read/Write (R/W) line high to indicate a read

– The 9S12 expects the external device at the given address will put data on the
data bus

– On the falling edge of the E-clock, the 9S12 latches the data into its internal
registerl

READ: MC9S12 puts address on address bus

MC9S12

ADDR(16)

MEMORY

E

R/W

ADDR

DATA

 Memory puts data on data bus

 HC12 latches data on falling edge of E clock

Example: Read from address 0x5678 & 0x5679

0x5678

0xba98

DATA(16)

R/W

E

LSTRB

 brings R/W high

12

EE 308 Spring 2009

The Real MC9S12DP256 Bus

• Up to now we have been using the 9S12 in Single Chip Mode

– In Single Chip Mode the 9S12 does not have an external address/data bus

• The 9S12 can be run in Expanded Mode

– In Expanded Mode the 9S12 does have an external address/data bus

• Things are a little more complicated on the real MC9S12DP256 bus than shown in the
simplified diagrams above

• The MC9S12DP256 has a multiplexed address/data bus

• The MC9S12DP256 sometimes accesses a single byte on a memory cycle, and it some-
times access two bytes on a memory cycle

The Multiplexed Address/Data Bus

• The MC9S12DP256 has a limited number of pins it can use

• To have full 16-bit address bus and a full 16-bit data bus the MC9S12DP256 would
need to use 32 extra pins (in addition to several pins used for the control bus)

• To save pin count Motorola uses the same set of pins for several purposes

• When put into expanded mode, the 9S12 uses the pins normally used for Ports A and
B for its mulitplexed address and data bus

– When running in expanded mode you can no longer use Ports A and B as general
purpose I/O lines

• The 9S12 uses the same sixteen line of Ports A and B for both address and data

• When the E-clock is low the sixteen lines AD15-0 are used for address

• When the E-clock is high the sixteen lines AD15-0 are used for data

13

EE 308 Spring 2009

The Multiplexed Address/Data Bus

Not enough pins on MC9S12 to allocate 35 pins

ADDR(16)

MEMORY
DATA(16)

Requires 35 bits

 for buses and pins for all other functions

R/W

E

LSTRB

MC9S12

MC9S12 has 16−bit address and 16−bit data buses

14

EE 308 Spring 2009

Memory Chip Interface

• Memory chips need separate address and data bus

– Need way to de-multiplex address and data lines from 9S12

• Memory chips need different control lines than the 9S12 supplies

• These control lines are:

– Chip Select – goes low when the 9S12 is accessing memory chip

– Write Enable – goes low when the 9S12 is writing to memory

– Output Enable – goes low when the 9S12 is reading from memory

– High Byte Enable – goes low when the 9S12 is accessing the High Byte (Odd
Address) of memory

– Low Byte Enable – goes low when the 9S12 is accessing the Low Byte (Even
Address) of memory

ADDR(16)

MEMORY
DATA(16)

WE

Need way to separate address and data

Memory needs separate address and data busses

CS

OE

HBE

LBE

LBE − Low Byte Enable

HBE − High Byte Enable

CS − Chip Select

WE − Write Enable

OE − Output Enable (Read)

15

E
E

308
S
p
rin

g
2009

The Multiplexed Address/Data Bus

• To talk to memory chip we will need to build a demultiplexer between the 9S12 and the memory chip

Not enough pins on MC9S12 to allocate 35 pins

R/W

E

LSTRB

DATA/ADDR (16)

ADDR(16)DEMUX

Requires 35 bits

Solution: multiplex address and data buses

 for buses and pins for all other functions

16−bit Bus: While E low, bus supplies address
 While E high, bus supplies data

CS

OE

WE

UB

LB

DATA

ADDR

MEMORY

MC9S12

MC9S12 has 16−bit address and 16−bit data buses

OE − Output Enable (Read)

WE − Write Enable

UB − Upper Byte Enable

LB − Lower Byte Enable

CE − Chip Enable

16

