
EE 308 Spring 2009

The Multiplexed Address/Data Bus

Not enough pins on MC9S12 to allocate 35 pins

ADDR(16)

MEMORY
DATA(16)

Requires 35 bits

 for buses and pins for all other functions

R/W

E

LSTRB

MC9S12

MC9S12 has 16−bit address and 16−bit data buses

1

EE 308 Spring 2009

Memory Chip Interface

• Memory chips need separate address and data bus

– Need way to de-multiplex address and data lines from MC9S12

• Memory chips need different control lines than the MC9S12 supplies

• These control lines are:

– Chip Select – goes low when the MC9S12 is accessing memory chip

– Write Enable – goes low when the MC9S12 is writing to memory

– Output Enable – goes low when the MC9S12 is reading from memory

– High Byte Enable – goes low when the MC9S12 is accessing the High Byte (Odd
Address) of memory

– Low Byte Enable – goes low when the MC9S12 is accessing the Low Byte (Even
Address) of memory

ADDR(16)

MEMORY
DATA(16)

WE

Need way to separate address and data

Memory needs separate address and data busses

CS

OE

HBE

LBE

LBE − Low Byte Enable

HBE − High Byte Enable

CS − Chip Select

WE − Write Enable

OE − Output Enable (Read)

2

E
E

308
S
p
rin

g
2009

The Multiplexed Address/Data Bus

• To talk to memory chip we will need to build a demultiplexer between the MC9S12 and the memory chip

LBE

R/W

E

LSTRB

DATA/ADDR (16)

ADDR(16)DEMUX

Requires 35 bits

Solution: multiplex address and data buses

 for buses and pins for all other functions

16−bit Bus: While E low, bus supplies address
 While E high, bus supplies data

Not enough pins on HC12 to allocate 35 pins

CS

OE

WE

HCS12

HCS12 has 16−bit address and 16−bit data buses

DATA

ADDR

MEMORY

HBE

OE − Output Enable (Read)

WE − Write Enable

CE − Chip Enable

HBE − High Byte Enable

LBE − Low Byte Enable

3

EE 308 Spring 2009

Accessing External Memory and Ports on the MC9S12 in Expanded Mode

• In expanded mode, the MC9S12 has a multiplexed 16-bit address and data bus.

• With a 16-bit address bus, the MC9S12 can access 216 = 65, 536 bytes of data

• With a 16-bit data bus, the MC9S12 can access 16 bits (two bytes) in a single bus cycle

• In expanded mode, the MC9S12 uses Port A and Port B as the multiplexed ad-
dress/data bus

• Timing is controlled by the E clock

• When the E clock is low, the MC9S12 places the address on the multiplexed bus

– Port A is used for address bits 15-8

– Port B is used for address bits 7-0

• When the E clock is high, the MC9S12 uses the multiplexed bus for data: bus

– Port A is used for the byte at the even address

– Port B is used for the byte at the odd address

For example, if accessing the sixteen-bit word at address 0x4000 (the bytes at addresses
0x4000 and 0x4001), Port A will access the byte at address 0x4000, and Port B will
access the byte at address 0x4001.

4

EE 308 Spring 2009

Byte Order in Microprocessors

• There are two ways to store bytes in a microprocessor memory. For example, if you
wanted to store the 16-bit word 0x1234 into memory locations 0x2000 and 0x2001, you
could do it in two ways:

Big Endian Little Endian

Address 0x2000 0x2001 0x2000 0x2001
Byte 0x12 0x34 0x34 0x12

• Motorola and Freescale (and some other manufacturers) use Big Endian (big end, or
most significant part, appears first in memory, big part is in lower part of memory)

• Intel (and some other manufacturers) use Little Endian (little end appears first, smaller
part of the number is in lower part of memory)

• Data types of more than one byte written on a Motorola machine will not be read
properly on an Intel machine without first swapping byte order (and vice versa).

• In the discussion which follows, even byte refers to a byte at an even address, odd byte
refers to a byte at an odd address. High byte refers to the most significant byte of
a 16-bit word, low byte refers to the least significant byte of a 16-bit word. For the
MC9S12, the high byte is at the even address, and the low byte is at the odd address
for a 16-bit access.

5

EE 308 Spring 2009

How to determine if a bus cycle accesses one or two bytes

• Sometimes you only want to access one byte at a time. For example,

– ldaa $4001

will access the single byte at address 0x4001.

• To determine whether it should access one byte or two bytes, the MC9S12 uses the
LSTRB and A0 lines.

– LSTRB low means that the MC9S12 is accessing the lower byte (byte at the odd
address) of a sixteen-bit word

– LSTRB high means that the MC9S12 is accessing the upper byte (byte at the even
address) of a sixteen-bit word

– A0 low means that the MC9S12 is accessing the upper (even) byte of a sixteen-bit
word

– A0 high means that the MC9S12 is accessing the lower (odd) byte of a sixteen-bit
word

LSTRB A0 Type of Access
0 0 16-bit access of an even address

Accesses bytes at even address and subsequent odd address
0 1 8-bit access of an odd address
1 0 8-bit access of an even address
1 1 Not allowed on external bus

• The instruction

– ldaa $4000

accesses the byte at address 0x4000, but doesn’t access the byte at address 0x4001.
For this access, the MC9S12 will put 0x4000 on the bus (A0 = 0, access byte at even
address), and will make LSTRB = 1 (don’t access byte at the odd address).

• The instruction

– ldaa $4001

accesses the byte at address 0x4001, but doesn’t access the byte at address 0x4000.
For this access, the MC9S12 will put 0x4001 on the bus (A0 = 1, do not access byte
at even address), and will make LSTRB = 0 (access byte at odd address).

• The instruction

– ldd $4000

accesses the bytes at addresses 0x4000 and 0x4001. For this access, the MC9S12 will
put 0x4000 on the bus (A0 = 0, access byte at even address), and will make LSTRB
= 0 (access byte at odd address).

6

EE 308 Spring 2009

• What to check for on the bus to determine if the MC9S12 is accessing a particular byte

– To check to see if the byte at address 0x4000 is being accessed, look for 0x4000 on
the address bus (do not need to check LSTRB).

– To check to see if the byte at address 0x4001 is being accessed, look for either
0x4000 or 0x4001 on the address bus (i.e., A0 is a don’t care), and make sure
LSTRB is low.

7

EE 308 Spring 2009

A Simple Parallel Input Port

• We want a port which will read 8 bits of data from the outside

• Such a port is similar to Port A or Port B when all pins are set up as input

• We need some hardware to drive the input data onto the data bus at the time the
MC9S12 needs it to be there to read

• The hardware needs to keep the data off the bus at all other times so it doesn’t interfere
with data from other devices

• A tri-state buffer can be used for this purpose

– A tri-state buffer has three output state: logic high, logic low, and high impedance
(high-Z)

– In high-Z state it is like the buffer is not connected to the output at all, so another
device can drive the output

– a tri-state output acts like a switch — when the switch is closed, the output logic
level is the same as the input logic level, and when the switch is open, the buffer
does not change the logic level on the output pin

– A tri-state buffer has a control input which, when active, drives the input logic
levels onto the output pins, and when inactive, opens the switch

DoutDin

Control

Control DoutDin

0 0

1

1

0

High Z

10

X

Tri−State Truth Table Tri−State Buffer
Control Inactive

Din Dout

Control Active

Tri−State Buffer

Din Dout

Din Dout

Symbol used in HC12 data book

8

EE 308 Spring 2009

A Simple Parallel Input Port

• When should the tri-state buffer be enabled to drive the data bus?

– The MC9S12 will access the buffer by reading from an address. We must assign
an address for the tri-state buffer

– We must have hardware to demultiplex the address from the data, and to determine
when the MC9S12 is reading from this address

– The 8-bit input will be connected to 8 bits of the 16-bit address/data bus of the
MC9S12

∗ If the address of the input is even, we need to connect the output of the buffer
to the even (high) byte of the bus, which is connected to AD15-8 (what was
Port A)

∗ If the address of the input is odd, we need to connect the output of the buffer
to the odd (low) byte of the bus, which is connected to AD7-0 (what was
Port B)

– The MC9S12 needs the data on the bus on the high-to-low transition of the E-clock

– We must enable the tri-state buffer when

1. The address of the buffer is on the address bus

2. The MC9S12 is reading from this address

3. The MC9S12 is reading the high byte if the address is even, or the low byte if
the address is odd

4. E is high

• For example, consider an input port at address 0x4000 (an even address, or high byte):

9

E
E

308
S
p
rin

g
2009

Example: Read from address 0x4000

R/W = 1

LSTRB

Port B

Port A

External
Data

ADDR = 0x4000

0x4000

0x4000

HCS12

CS_R

CS_R

Latch address using a transparent latch.
When E is low, transfer inputs of latch
to outputs. When E is high, outputs
don’t change even if inputs do.

PLD

A/D 15−8

A/D 7−0 LATCH

ADDR

A/D

R/W

E

E

ADDR(16)

R/W

E = 1

Verilog code for chip select

 (rw == 1’b1) && (e == 1’b1)) ? 1’b0 : 1’b1;

Verilog code for Port A

inout [7:0] port_a;

input [7:0] ext_data;

Verilog code for address latch

assign cs_r = ((address == 16h’4000) &&

assign port_a = (cs_r == 1’b0) ? ext_data : 8’hz;

output reg [15:0] address;

always @(e or port_a or port_b)

 if (e == 1’b0) address = {port_a, port_b};

10

EE 308 Spring 2009

A Simple Parallel Output Port

• We want a port which will write 8 bits of data to the outside

• Such a port is similar to Port A or Port B when all pins are set up as output

• We need some hardware to latch the output data at the time the MC9S12 puts the
data on the data bus

• We can use a set of 8 D flip-flops to latch the data

– The D inputs will be connected to the data bus

– The clock to latch the flip-flops should make its low-to-high transition when the
MC9S12 has the appropriate data on the bus

– The MC9S12 will access the flip-flops by writing to an address. We must assign
an address for the tri-state buffer

– We must have hardware to demultiplex the address from the data, and to determine
when the MC9S12 is writing to this address

– The 8-bit inputs of the D flip-flops will be connected to 8 bits of the 16-bit ad-
dress/data bus of the MC9S12

∗ If the address of the input is even, we need to connect the flip flop inputs
to the even (high) byte of the bus, which is connected to AD15-8 (what was
Port A)

∗ If the address of the input is odd, we need to connect the flip flop inputs to
the odd (low) byte of the bus, which is connected to AD7-0 (what was Port B)

– The hardware should latch the data on the high-to-low transition of the E-clock

– Our hardware should bring the clock of the flip-flops low when

1. The address of the flip-flops is on the address bus

2. The MC9S12 is writing to this address

3. The MC9S12 is writing the high byte if the address is even, or the low byte if
the address is odd

4. E is high

• For example, consider an output port at address 0x4001 (an odd address, or low byte):

11

E
E

308
S
p
rin

g
2009

Note: ADDR can be 0x4000 or 0x4001

R/W = 0

LATCH

ADDR

A/D

R/W

E

E

ADDR(16)

R/W

LSTRB

OR

LSTRB = 0

LSTRB

0x??AA

Example: Write an 0xAA to address 0x0401

Port A

Port B

0x4001

0x4001

ADDR = 0x4000

ADDR = 0x4001

HCS12

ENA

WE

WE

AD 15−8

AD 7−0

PLD

ENA

 with LSTRB = 0

assign we = ((address[15:1] == 15’b0100_0000_0000_000) &&

 (lstrb == 1’b0) && (rw == 1’b0)) ? 1’b0 : 1’b1

Verilog code for ext_data

8

F
F

EXT_DATA

output reg [7:0] ext_data;

always @(negedge e)

 if (we == 1’b0) ext_data <= port_b;

Verilog code for we

12

EE 308 Spring 2009

An Output Port Which Can Be Read

• Suppose we set ut the MC9S12 Port A for output, and we write a number to Port A

• When we read from Port A, we will read back the number we wrote

• This is a useful diagnostic

• We can make our output port have this same behaviour by connecting the output of
the flip-flops back into the data bus through a tri-state buffer

• We should enable this tri-state buffer when the MC9S12 is reading from the address of
the output port

• For example, consider the output port at address 0x4001:

13

E
E

308
S
p
rin

g
2009

R/W = 0

LATCH

E

ADDR(16)

R/W

LSTRB

Port A

Port B

R/W = 1

CS_R

HCS12

OR

LSTRB = 0

ADDR = 0x4000

ADDR = 0x4001

WE

E = 1

AD 15−8

AD 7−0

PLD

ENA

The HC12 will read the data on the flip−flops on the high−to−low transition of the E−clock

Reading from address 0x4001 (ADDR = 0x4000 or 0x4001, LSTRB low, R/W high, E high) will bring CS_R low

On the high−to−low transition of E with WE low, the data into the flip−flops

Writing to address 0x4001 (ADDR = 0x4000 or 0x4001, LSTRB low, R/W low) will bring WE low.

This will drive the data from the flip−flops onto the data bus

8

F
F

14

EE 308 Spring 2009

An Input-Output Port

• Like Port A, we can make a port be either input or output

• For simplicity, we will make all bits inputs or all bits outputs rather than allowing any
individual bit to be either an input or an output

• To do this we need a data direction bit (at another address), and a tri-state buffer on
the outputs of the flip-flops

• The data direction bit is simply a flip-flop which is set or cleared by the MC9S12

• When the data direction bit is cleared, the data from the output flip-flops will be
removed from the external pins

– When we read from the port, we will read the logic levels on the pins put there by
external logic

• When the data direction bit is set, the data from the output flip-flops will be removed
from the external pins

– When we write to the port, we will drive the data from the flip-flops onto the
external pins

– For example consider an I/O port at address 0x4001. The direction of the port is
determined by a data direction bit at address 0x4002:

15

E
E

308
S
p
rin

g
2009

ADDR(16)

LSTRB

Port A A/D 15−8

Port B A/D 7−0

R/W = 1

CS_R

CS_W

R/W = 0

HCS12

OR

LSTRB = 0

E = 1

ADDR = 0x4000

ADDR = 0x4001

LATCH

E

R/W

assign port_b = (cs_r == 1’b0)? ext_data : 8’hz;

8

F
F

Data Direction Bit

 This data will be driven onto the external pins

 This data will not be driven onto the external pins

The data direction bit is the output of a flip−flop which was written to at another address of the HC12
For example, it could be Bit 4 of address 0x4002

Writing a 0 to Bit 4 of address 0x4002 disables the output tri−state buffer
 When we write to address 0x4001 we will latch the data into the flip−flops

 When we read from address 0x4001, we will read what an external device drives onto the pins

Writing a 1 to Bit 4 of address 0x4002 enables the output tri−state buffer
 When we write to address 0x4001 we will latch the data into the flip−flops

 When we read from address 0x4001 we will read the data latched into the flip−flops

EXT_DATA

Verilog code for ext_data

inout [7:0] ext_data;

assign ext_data = (ddr == 1’b1)? ext_latch : 8’hz;

always @(posedge cs_w) ext_latch <= port_b;

inout [7:0] port_b;

reg [7:0] ext_latch;

16

