
EE 308 Spring 2009

Motor Control

Consider a motor which has a maximum speed of 5000 RPM. The speed vs. duty cycle
may look something like this:

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Duty Cycle (%)

Sp
ee

d 
(R

PM
)

Motor Speed vs. Duty Cycle

The motor doesn’t start rotating until it is driven with a 10% duty cycle, after which it will
increase speed linearly with the increase in duty cycle.

If the motor is initially stopped, and is then turned on (with 100% duty cycle), the speed
vs. time might look something like this:

0 1 2 3 4 5 6
0

1000

2000

3000

4000

5000

6000

t (seconds)

Sp
ee

d 
(R

PM
)

Step Response of Motor

1



EE 308 Spring 2009

We will control the motor by adjusting the duty cycle with the HCS12. We will do
this by measuring the speed and updating the duty cycle on a regular basis. Let’s do the
adjustments once every 8 ms. This means that we will adjust the duty cycle, wait for 8 ms
to find the new speed, then adjust the duty cycle again. How much change in speed will
there be in 8 ms? The motor behaves like a single time constant system, so the equation for
the speed as a function of time is:

S(t) = Sf + e−t/τ (Si − Sf )

where Si is the speed at time 0, Sf is the speed at time ∞, and τ is the time constant of the
system. With a duty cycle of D, the final speed will be:

Sf = αD + S0

where S0 is the speed the motor would turn with a 0% duty cycle if the speed continued
linearly for duty cyclces less than 10%, and α is the slope of the speed vs. duty cycle line
(5000/0.9 in this example).

Here I assume that the time constant of the small motors we are using is about 1 second
— i.e., it takes about 5 seconds (5 time constants) for the motor to go from a dead stop to
full speed. If T = 8 ms, the motor will have changed its speed from Si to

S(T ) = Sf + e−T/τ (Si − Sf )

S(T ) = (αD + S0)(1− e−T/τ ) + e−T/τSi

S[n] = (αD + S0)(1− e−T/τ ) + e−T/τS[n− 1]

where S[n] is the speed at the nth cycle.

Consider an integral controller where the duty cycle is adjusted according to:

D[n] = D[n− 1] + k(Sd − Sm[n])

We can simulate the motor response by iterating through these equations. Start with
Sm[1] = 0, D[1] = 0, and Sd = 1500. Then we calculate:

Sm[n] = (αD[n− 1] + S0)(1− e−T/τ + e−T/τSm[n− 1]

D[n] = D[n− 1] + k(Sd − Sm[n])

In MATLAB we can simulate this as:

2



EE 308 Spring 2009

alpha = 5000/0.9; % Max speed 5,000 RPM; turns on at 10% duty cycle

Sd = 1500; % Desired Speed

S0 = -alpha*0.1; % Speed motor would turn at 0% duty cycle if linear

tau = 1; % One second time constant

T = 8e-3; % Update rate is 8 ms

k = 1e-7; % Constant for integral control

Sm = 0; % Measured speed starts at 0

D = 0.1; % Duty cycle starts at 10%

t = 0;

ee = exp(-T/tau); % Precalculate this commonly used value

for n=2:1000 % Make end value bigger if needed

Sm(n)=(alpha*D(n-1) + S0)*(1-ee) + ee*Sm(n-1);

D(n) = k*(Sd - Sm(n)) + D(n-1);

t(n) = t(n-1)+T;

end

plot(t,Sm);

By changing the value of k we can see how this parameter affects the response. Here is
the curve for k = 1.0× 10−7:

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

1600

1800

2000

T (seconds)

Sp
ee

d 
(R

PM
)

Integral Control, k = 1 × 10−7

With this value of k, it will take about 1 minute for the motor to get to the desired speed.

3



EE 308 Spring 2009

Here is the curve for k = 1.0× 10−6:

0 2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

1400

1600

1800

T (seconds)

Sp
ee

d 
(R

PM
)

Integral Control, k = 1 × 10−6

Now it takes about 10 seconds to get to the desired speed, with a little bit of overshoot.

Let’s try k = 1.0× 10−5:

0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

T (seconds)

Sp
ee

d 
(R

PM
)

Integral Control, k = 1 × 10−5

4



EE 308 Spring 2009

This gets to the desired value more quickly, but with a lot of oscillation. Let’s increase k to
10−4.

0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

T (seconds)

Sp
ee

d 
(R

PM
)

Integral Control, k = 1 × 10−4

For this value of k there is a significant oscillation. However, a real motor will not act like
this. If we look at the duty cycle vs time, we see:

0 1 2 3 4 5 6 7 8 9 10
−150

−100

−50

0

50

100

150

200

250

T (seconds)

Du
ty

 C
yc

le

Integral Control, k = 1 × 10−4

To get this oscillating response, the duty cycle must go to over 100%, and below 0%, which
is clearly impossible. To get the response we expect in the lab, we need to limit the duty
cycle to remain between 20% and 100%. Thus, we change our simulation to be:

5



EE 308 Spring 2009

alpha = 5000/0.9; % Max speed 5,000 RPM; turns on at 10% duty cycle

Sd = 1500; % Desired Speed

S0 = -alpha*0.1; % Speed motor would turn at 0% duty cycle if linear

tau = 1; % One second time constant

T = 8e-3; % Update rate is 8 ms

k = 1e-7; % Constant for integral control

Sm = 0; % Measured speed starts at 0

D = 0.1; % Duty cycle starts at 10%

t = 0;

ee = exp(-T/tau); % Precalculate this commonly used value

for n=2:1000 % Make end value bigger if needed

Sm(n)=(alpha*D(n-1) + S0)*(1-ee) + ee*Sm(n-1);

if (Sm(n) < 0) Sm(n) = 0; end; % Motor speed cannot be less than 0

D(n) = k*(Sd - Sm(n)) + D(n-1);

if (D(n) > 1.0) D(n) = 1.0; end; % Keep DC between 20% and 100%

if (D(n) < 0.2) D(n) = 0.2; end;

t(n) = t(n-1)+T;

end

plot(t,Sm);

When we use this to simulate the motor response, we get:

0 2 4 6 8 10
0

500

1000

1500

2000

T (seconds)

Sp
ee

d 
(R

PM
)

Integral Control, k = 1 × 10−4

0 2 4 6 8 10
0

20

40

60

80

100

120

T (seconds)

Du
ty

 C
yc

le

Integral Control, k = 1 × 10−4

In your program for Lab 5, you will use a Real Time Interrupt with an 8 ms period. In
the RTI interrupt service routine, you will measure the speed, and set the duty cycle based
on the measured speed. Your ISR will look something like this:

6



EE 308 Spring 2009

void INTERRUPT rti_isr(void)

{

Code to read potentiometer voltage and convert into RPM

Code to measure speed Sm in RPM

Code which sets duty cycle to

DC = DC + k*(Sd-Sm)

if (DC > 1.0) DC = 1.0;

if (DC < 0.2) DC = 0.2;

Code which writes the PWM Duty Cycle Register

to generate duty cycle DC.

Code which clears RTI flag

}

In the main program, you will display the measured speed, desired speed, and duty cycle
on the LCD display.

Your values of k will probably be different than the values in these notes because speed
vs. duty cycle, time constant, and maximum speed will most likely be different than the
values I used.

7



EE 308 Spring 2009

Using Floating Point Numbers with the Gnu C Compiler

It will be much easier to do the necessary calculations by using floating point numbers.
Here is an example of a program which uses floating point:

#include "DBug12.h"

main()

{

float x;

x = 10.2;

printf("x = %d\r\n",(short) x);

}

To use floating point numbers with the Gnu C compiler, go to the Options menu,
Project options submenu, and add -fshort-double to the list of compiler opitons:

You cannot use math functions such as sqrt(). The size of the code which will be created
if you use the math library for the Gnu C compiler will be too large to fit in the memory
of the 9S12. You can do standard arithmetic operations such as addition, multiplication
and divison. Also, you cannot print floating point numbers using DB12FNP->printf(). You
must convert numbers to integer before printing them.

8


