
EE 308 Spring 2010

EE 308

Exam 2
March 29, 2010

Name:

You may use any of the class handouts and one page of notes. Show all work. Partial credit will be given.
No credit will be given if an answer appears with no supporting work.

For all the problems in this exam, assume you are using an MC9S12DG256 with an 8 MHz oscillator clock
and a 24 MHz bus clock.

Also, assume that derivative.h has been included, so you can refer any register in the MC9S12 by
name rather than by its address in any C code you write.

1. The following questions concern writing C code.

(a) Write some C code which will read the unsigned byte at address 0x1000, and assign it to a
variable called x1. Be sure to define the variable x1.

char x1; // Define variable x1

x1 = *(char *) 0x1000;

(b) Write some C code which will do the following: If bits 3, 2, 1 and 0 of PTH have the value 1001
(binary), write a 0xff to PORTB. Otherwise, write a 0x00 to PORTB. (Assume that all bits of
PTH have been set up for input, and all bits of PORTB have been set up for output.)

if ((PTH & 0x0f) == 0x09) PORTB = 0xff;
else PORTB = 0x00;

(c) Write some C code which sets bits 1 and 3, and clears bits 0 and 5 of the TIOS register. It should
leave the other bits of TIOS unchanged.

TIOS = TIOS | 0x0A & ˜0x21;

1



EE 308 Spring 2010

2. The following question concerns interrupts and resets. Assume the MC9S12 has the following in its
memory:

0 1 2 3 4 5 6 7 8 9 A B C D E F
2000 10 23 3B 7C 10 04 86 80 B7 10 25 3B FC 10 18 F3
2010 12 50 FD 10 18 86 40 B7 10 23 3B FC 10 12 DD 02
2020 86 02 B7 10 23 3B 7C 10 03 86 40 B7 10 25 3B 86
FFC0 CC 05 9F CD 99 03 84 9C 01 9B CC 90 66 FC 93 30
FFD0 7E E3 4B 7E E5 38 21 54 05 83 09 34 2A 38 3C 03
FFE0 41 38 66 F2 7C 13 37 0C 25 F2 0C 38 5F 1B 42 1A
FFF0 7A 26 21 13 6A AA 20 1F 4B 38 33 38 45 38 20 29

(a) Explain what happens to the Program Counter when the MC9S12 is powered up or reset. What
will be the value in the MC9S12’s Program Counter immediately after a reset?
The program counter is loaded with the contents of the reset vector, 0xFFFE and 0xFFFF. Im-
mediately after reset, the program counter will have a 0x2029.

(b) What is the address of the instruction the MC9S12 will execute (i.e., the first instruction of the
interrupt service routine) when it gets the RTI interrupt?
The RTI interrupt vector is at location 0xFFF0-0xFFF1, so the address of the first instruction of
the RTI interrupt service routine is 0x7A26.

(c) Write some C code to set up the MC9S12 to generate an RTI interrupt about once every 4 ms.
Be sure to enable the interrupt.

RTICTL = 0x60; // Set rate to 4.096 ms (other values do this too)
CRGINT = 0x80; // Enable RTI interrupt
CRGFLG = 0x80; // Clear RTI flag
UserRTI = (unsigned short) &rti_isr; // Set interrupt vector
__asm(cli); // Enable interrupts in general

(d) Write an RTI interrupt service routine which increments PORTA every time the RTI interrupt
occurs.

interrupt void rti_isr(void)
{

PORTA = PORTA + 1; // Increment PORTA
CRGFLG = 0x80; // Clear RTI flag

}

2



EE 308 Spring 2010

3. The MC9S12 registers have the following values when an enabled RTI interrupt occurs:

Reg - -
S X H I N Z V C

CCR 1 1 0 0 1 0 0 1
A:B A3 92
X AABB
Y 1234
SP 18A3
PC 2956

(a) What will be the value of the MC9S12 stack pointer when the MC9S12 begins executing the
first instruction of the RTI interrupt service routine?
The stack pointer is decremented by 9 because the MC9S12 pushes 9 bytes onto the stack. The
new value will be 0x18A3 - 9 = 0x189A.

(b) Explain what happens to the MC9S12 stack when the MC9S12 gets the RTI interrupt. Show
how the stack will be changed when the interrupt occurs – that is, show what bytes will be put
into the stack area of memory, and what locations are.
The MC9S12 completes the current instruction, pushes CCR, B, A, X, Y, and PC onto the stack,
and loads the PC with the RTI interrupt vector.

Addr Value What
0x189A C9 CCR
0x189B 92 B
0x189C A3 A
0x189D AA X High
0x189E BB X Low
0x189F 12 Y High
0x18A0 34 Y Low
0x18A1 29 PC High
0x18A2 56 PC Low

(c) What happens to the condition code register when the MC9S12 gets an RTI interrupt? Why did
the Motorola engineers have the MC9S12 do this?

The I bit of the condition code register is set to 1. This disables interrupts so the MC9S12 does
not respond to another interrupt while it is in an interrupt service routine. The interrupts are re-
enabled when the MC9S12 leaves the interrupt with the rti (Return from Interrupt) instruction,
and the CCR (with a 0 in the I bit) is reloaded with its original value from the stack.

3



EE 308 Spring 2010

4. You are doing an experiment where you need to measure the the speed of an object. You do this by
measuring the time it takes an object to travel between two points. When the object passes the first
point it breaks a light beam which creates a pulse on a signal connected to Port T1. When it passes
the second point it creates a pulse on a signal connected to Port T2. You know before the experiment
that the time difference will be between 100 ms and 200 ms.

Port T2

T

Port T1

(a) What value should you write to the timer prescaler? Why? Write some C code to do this.
With a prescaler of 0, the overflow rate is 65,536 cycles/24,000,000 cycles/second = 2.73 ms.
Need to increase this by a factor of 128 to get an overflow rate of 350 ms. To do this, write a 7
to the prescaler.

TSCR2 = 0x07;

(b) How do you set up the MC9S12 to capture the times of the rising edges of the two signals? Write
some C code to do this.

TSCR1 = 0x80; // Enable timer subsystem
TSCR2 = 0x07; // Set prescaler to 350 ms overflow rate
TIOS = TIOS & ˜0x06; // Set up channels 1 and 2 for input capture
TCTL4 = TCTL4 | 0x14 & ˜0x28; // Capture rising edges
TFLG1 = 0x06; // Clear flags for channels 1 and 2

(c) Write some C code which will wait until the object passes the second point.
Wait until timer channel 2 flag is set.

while ((TFLG1 & 0x04) == 0) ;

(d) Write some C code which will clear the flag for Timer Channel 2.
Write a 1 to flag for channel 2, and a 0 to all other bits of TFGL1.

TFLG1 = 0x04;

(e) After both edges have been captured, the following is in the MC9S12 timer registers:

TC0 TC1 TC2 TC3 TC4 TC5 TC6 TC7
681C C25F 1B25 A29C F49A F902 18AC 0059

How long (in seconds) did it take for the object to traverse the distance?
TC2 - TC1 = 0x1B25 - 0xC25F = 0x58C6 = 22,72610 cycles.
(Note that there was a borrow on the subtraction, which is ignored.)
Normally, one clock cycle is 1/24,000,000 seconds. The prescaler is 7, which increases this time
by 27 = 128, so one cycle of the timer subsystem is 128/24,000,000 seconds.
22,726 cycles ×128/24, 000, 000 cycles/sec = 221 ms.

4



EE 308 Spring 2010

5. The phaser control system on the Enterpise has burned out. Mr. Scott asks you to design a new control
system using the MC9S12. The phaser needs a PWM signal with a 10 kHz frequency. The stun setting
requires a 10% duty cycle. The vaporize setting requires an 80% duty cycle.

(a) Set up the MC9S12 to produce a 10 kHz PWM signal with a 10% duty cycle on Bit 0 of Port P.
24,000,000/10,000 = 2,400 cycles.
Can use either clock mode 0 or clock mode 1.
For clock mode 1:
2,400 = PWMPER0 × 2PCKA+1× PWMSCLA
Can do this with PWMPER0 = 200, PCKA = 1, PWMSCLA = 3 (and many other ways) This is
what I do below.
For clock mode 0,
2,400 = PWMPER0 ×2PCKA

Can do this with PWMPER0 = 150 and PCKA = 4 (and other ways)

PWMCTL = 0x00; // 8 bit mode
PWMPOL = 0xFF; // high polarity
PWMCAE = 0x00; // left aligned
PWMCLK = PWMCLK | 0x01; // clock mode 1
PWMPRCLK = PWMPRCLK | 0x01 & ˜0x06; // PCKA = 1 (for channels 0, 1, 4, 5)
PWMSCLA = 0x03; // scale for channels 0, 1, 4, 5
PWMPER0 = 200; // period for channel 0
PWME = PWME | 0x01; // enable channel 0
PWMDTY0 = 20; // 10% duty cycle for channel 0

(b) Set up the MC9S12 to produce a 10 kHz PWM signal with an 80% duty cycle on Bit 1 of Port P.
Same frequency as for Channel 0. Channel 0 and 1 share PCKA and PWMSCLA, so those do
not need to be reset.
Need to select clock mode 1 for channel 1, set the period and duty cycle, and enable channel 1.

PWMCLK = PWMCLK | 0x02; // clock mode 1 for channel 1
PWMPER1 = 200; // period for channel 1
PWME = PWME | 0x02; // enable channel 1
PWMDTY1 = 160; // 80% duty cycle for channel 1

5


