
EE 308 Spring 2010

EE 308 – Homework 4

Due Feb. 15, 2010

1. Find the values of the N, Z, C, and V bits of the CCR register after execution of each of the
following instructions, given that (A) = $C5 and the condition flags are N=0, C=1, Z=0, and
V=0. (Assume these are the values before each instruction starts e.g., do not use the flag
state resulting from the instruction in part (a) as the initial state for part (b).)

(a) ADDA #$7A

(b) ADCA #$3A

(c) LSRA

(d) ASRA

(e) CMPA #$D0

(f) SUBA #$AC

2. Suppose you started with the following register contents:
PC=2007 Y=7892 X=FF00 A=44 B=70 SP=1F7F

What address will be in the stack pointer, what values will be in the registers, and exactly
what is in the stack after the following instructions sequence is executed:

PSHA
PSHY
PSHB
PULX
JSR $2007

3. Below are some data in the MC9S12 memory:

0 1 2 3 4 5 6 7 8 9 A B C D E F
1000 D6 05 35 CF E0 00 FE 08 20 A6 00 47 6A 05 08 53
1010 26 F7 34 C6 C8 CD 9C 40 03 26 FD 53 26 F7 3D 3F
1020 07 C2 3A 68 F3 09 C2 67 9A 0F AA 55 08 40 CD CF

Indicate the values in the registers after the MC9S12 executes the following instructions. Also
write down the number of cycles needed to execute each instruction. Show what will be in the
registers (in hex) after each of the instructions. If the instruction does not change a register,
you may leave that entry blank. Note that the first instruction is located at address 0x2000.

D
Instruction A B X Y SP N Z V C Addressing Effective

Mode Address
0A BB 1010 1020 0A00 1 0 1 0

lds #$1018
cpd $100D
pulx
asrb
stab $1013
adda 2,-y

1

EE 308 Spring 2010

4. Suppose that we have the following instruction sequence to be executed by the MC9S12,
what will be the contents of the topmost four bytes of the stack after the execution of these
instructions?

lds #$3C00
ldd #$AA55
staa 1,-SP
stab 1,-SP
ldx #$3377
stx 2,-SP

5. Draw the stack frame (the memory where the stack is located) and enter the value of each
stack slot (if it is known) at the end of the following instruction sequence. Also, indicate the
value of the stack pointer after execution of each instruction.

org $2000
lds #$2000
leas -2,sp ; reserve 2 bytes for local variables
clrb
ldaa #53
psha
ldaa #$A2
psha
ldx #$45AC
pshx
jsr sub_123

...

sub_123: pshd
leas -4,sp ; reserve 4 bytes for local variables

6. Write a subroutine to display a counting pattern on PORTB, and return the next number (the
number passed to the subroutine plus 1). The number to display is passed in accumulator
A. Store this number into PORTB and return the next pattern in the sequence in accumulator
A. The subroutine should return with all registers expect A the same as when the subroutine
was called, so use the stack to save and restore any registers you need to use to implement
the subroutine.

7. Write a subroutine to display a shifting bit on PORTB. When you enter the subroutine, the three
least significant bits of accumulator A represent the bit to display, and bit 3 of accumulator
A represents the direction to shift the bit for the next pattern (1 for left, 0 for right). The
upper four bits of accumulator A are ignored. The bit shifts until it reaches the end, then
changes direction. For example, if A contained 00001100, this would indicate that you should
turn on bit 4 of PORTB, and update accumulator A to turn on bit 5 next time. You should
return a 00001101 in accumulator A. When you reach the left end (bit 7) change the direction
bit from 1 to 0. When you reach the right end (bit 0) change the direction bit from 0 to 1.
The subroutine should return with all registers expect A the same as when the subroutine

2

EE 308 Spring 2010

was called, so use the stack to save and restore any registers you need to use to implement
the subroutine.

8. Write a subroutine to generate the next pattern in the sequence for an eight-bit Johnson
counter. The procedure to do this is as follows: Shift the present pattern to the right by one
bit. The most significant bit of the next pattern is the inverse of the least significant bit of
the present pattern. The number to convert is in accumulator A, and the next pattern in
the sequence is returned in accumulator A. The subroutine should return with all registers
expect A the same as when the subroutine was called, so use the stack to save and restore
any registers you need to use to implement the subroutine.

9. Write a subroutine to take the next entry out of a table, write it to PORTB, and update the
index into the table. Here is an example of what the table might look like:

table_len: equ (table_end-table)

org data

table: dc.b $00, $01, $02, $04, $08, $10, $20, $40, $80
table_end:

The index of the number to be displayed is passed in accumulator A. Your code should write
the table entry corresponding to that index to PORTB. Return the index to the next table
element in accumulator A. (For example, if accumulator A were 5, you would write the fifth
element of the table, $10, to PORTB, and return a 6.) Make sure that the index stays between
0 and table_len - 1. The subroutine should return with all registers expect A the same as
when the subroutine was called, so use the stack to save and restore any registers you need
to use to implement the subroutine.

10. Write the program for Part 3 of Lab 2. The program will display four different patterns on
the LED display connected to Port B. You will use the state of bits 1 and 0 of the onboard
DIP switch to select which of the four patterns to display. Write a program to set up Port
B as an eight bit output port (be sure to disable the seven-segment displays, and to enable
the individual LEDs), and to implement (i) a binary up counter, (ii) a shifting bit, (iii) a
Johnson counter, and (iv) a Ford Thunderbird style turn signal based on the state of the
DIP switches. (These are the four subroutines from Problems 6 to 9.) Insert a 100 ms delay
between updates of the display. Write the delay as a subroutine. Be sure to initialize the
stack pointer in you program.

Use four variables to hold information on the four patterns. Initialize these four variables to
the first pattern in the sequence.

You should have a loop which checks the DIP switches connected to Port H. If bit 7 of the
DIP switches is high, end the loop and exit back to DBug-12 with a SWI instruction. If bit 7
of the DIP switches is low, check bits 0 and 1 to determine what pattern to display:

PH1 PH0 Pattern
0 0 Binary Up Counter
0 1 Shifting Bit
1 0 Johnson Counter
1 1 TBird Turn Signal

3

EE 308 Spring 2010

For example, if bits 1 and 0 of Port H are 10, load accumulator A with the Johnson Counter
variable, call the Johnson Counter subroutine, and save the returned accumulator A into
the Johnson Counter variable. Call the Delay subroutine, then loop back to check the DIP
switches again.

4

