
EE 308 Spring 2010

Binary, Hex and Decimal Numbers (4-bit representation)

Hex

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Decimal

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

Binary

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1

EE 308 Spring 2010

What does a number represent?

(Signed 8−bit number)

intends for the code.

0x72

’r’ (ASCII)

INC (HC12 instruction)

2.26V (Input from A/D converter)

114
10

10

Some possible codes:

Set temperature in room to 69 F

Set cruise control speed to 120 mph

(Unsigned 8−bit number)

+114

Binary numbers are a code, and represent what the programmer

2

EE 308 Spring 2010

Binary to Unsigned Decimal:

1111011 2

1 x 2 + 1 x 2 + 1 x 2
5 4

+ 1 x 2 + 0 x 2 + 1 x 2 + 1 x 2
6 2 1 03

1 x 64 + 1 x 32 + 1 x 16 + 1 x 8 + 0 x 4 + 1 x 2 + 1 x 1

123
10

Convert Binary to Unsigned Decimal

Hex to Unsigned Decimal

33494

8 x 16 + 2 x 16 + 13 x 16 + 6 x 16

82D6 16

2 1 03

8 x 4096 + 2 x 256 + 13 x 16 + 6 x 1

10

Convert Hex to Unsigned Decimal

3

EE 308 Spring 2010

Unsigned Decimal to Hex

721 = 2D1

Q

721/16

 45/16

 2/16

45

 2

 0

1

13

2

1

D

2

10 16

Division
R

Decimal Hex

Convert Unsigned Decimal to Hex

4

EE 308 Spring 2010

If most significant bit is 0 (most significant hex digit 0−7), number is positive.
Get decimal equivalent by converting number to decimal, and using + sign.

Example for 8−bit number:

If most significant bit is 1 (most significant hex digit 8−F), number is negative.
Get decimal equivalent by taking 2’s complement of number, converting to decimal,
and using − sign.

Example for 8−bit number:

Signed Number Representation in 2’s Complement Form:

16
 − (5 x 16 + 13 x 16)

 − (5 x 16 + 13 x 1)

 − 93

3A −> + (3 x 16 + 10 x 16)

+ (3 x 16 + 10 x 1)

+ 58

16

A3 −> − (5D)

1

10

0

10
10

16
1 0

10

10

10

5

EE 308 Spring 2010

One’s Complement Table Makes It Simple To Find 2’s Complements

0

1

2

3

4

5

6

7 8

D

E

F

9

A

B

C

One’s Complement Table

To take two’s complement, add one to one’s complement.

Take two’s complement of :D0C3

2F3C + 1 = 2F3D

6

EE 308 Spring 2010

Addition and Subtraction of Hexadecimal Numbers.
Setting the C (Carry), V (Overflow), N (Negative) and Z (Zero) bits

How the C, V, N and Z bits of the CCR are changed

Condition Code Register Bits N, Z, V, C

N bit is set if result of operation in negative (MSB = 1)

Z bit is set if result of operation is zero (All bits = 0)

V bit is set if operation produced an overflow

C bit is set if operation produced a carry (borrow on subtraction)

Note: Not all instructions change these bits of the CCR

7

EE 308 Spring 2010

Addition of Hexadecimal Numbers

ADDITION:

C bit set when result does not fit in word

V bit set when P + P = N
 N + N = P

 7A
+52

 CC

+52
 2A

 7C

+8A
 AC

 36

+72
 AC

 1E

N bit set when MSB of result is 1

Z bit set when result is 0

C: 0 C: 1

V: 0

C: 0

V: 1

C: 1

V: 1 V: 0

N: 1 N: 0 N: 1

Z: 0 Z: 0 Z: 0

N: 0

Z: 0

8

EE 308 Spring 2010

Subtraction of Hexadecimal Numbers

SUBTRACTION:

C bit set on borrow (when the magnitude of the subtrahend

V bit set when N − P = P
 P − N = N

 is greater than the minuend)

 7A
−5C

 1E

−5C
 8A

 2E

 5C
−8A

 D2

 2C
−72

 BA

C: 0

V: 0

C: 1

V: 0

C: 0

V: 1V: 1

C: 1

N: 0 N: 0 N: 1 N: 1

Z: 0Z: 0Z: 0Z: 0

N bit set when MSB is 1

Z bit set when result is 0

9

EE 308 Spring 2010

Writing Assembly Language Programs — Use Flowcharts to Help Plan Program Structure

Flow chart symbols:

START

OPERATION

END

CONDITIONAL BRANCH

LABEL:

YES

NO

10

EE 308 Spring 2010

IF-THEN Flow Structure

 LDAB #5 ; var = 5

EXAMPLE:

{
 var = 5;
}

 BRA L2

 STAB var

OR:

L2: next instruction

 next instruction
 STAB var
L2:

 CMPA #10 ; if (A < 10)if (A<10)

 BLT L1 ; signed numbers

L1: LDAB #5 ; var = 5;

 CMPA #10 ; if (A < 10)
 BGE L2 ; signed numbers

L2:

C?

A

if (C)
{

}
 A;

FALSE

TRUE

L1:

11

EE 308 Spring 2010

IF-THEN-ELSE Flow Structure

L1: LDAB #5 ; var = 5

L1:

if (A<10)
{
 var = 5;
}
else
{
 var = 0;
}

L2: next instruction

 BRA L2

 STAB var

 CMPA #10 ; if (A < 10)
 BLT L1 ; signed numbers
 CLR VAR ; var = 0

L2:

 B;

B

TRUE

FALSE

C?

A

if (C)
{

}
else
{

}

 A;

12

EE 308 Spring 2010

DO WHILE Flow Structure

 BLE L1 ; unsigned numbers

do
{
 table[i] = table[i]/2;

}

i = 0;

 i = i+1;

while (i <= LEN);

 LDX #table
 CLRA ; i = 0
L1: ASR 1,X+ ; table[i] /= 2
 INCA ; i = i+1
 CMPA #LEN ; while (i <= 10)

EXAMPLE:

TRUE

L1:

C?

FALSE

A

{
 A;
}
while (C);

do

13

EE 308 Spring 2010

WHILE Flow Structure

 INCA ; i = i + 1

i = 0;
while (i <= LEN)
{
 table[i] = table[i]*2;
 i = i + 1;
}

L3:

L1:

 BRA L1
L3: next instruction

 LDX #table

 BLT L2

 CLRA ; i = 0
L1: CMPA #LEN ; while (i <= LEN)

 BRA L3
L2: ASL 1,X+ ; table[i] /= 2

EXAMPLE:

C?

FALSE

while (C)
{

}
 A;

A
L2:

TRUE

14

EE 308 Spring 2010

Use Good Structure When Writing Programs — Do Not Use Spaghetti Code

SPAGHETTI CODE
DO NOT USE

15

EE 308 Spring 2010

Example Program: Divide a table of data by 2

Problem: Start with a table of data. The table consists of 5 values. Each value is
between 0 and 255. Create a new table whose contents are the original table divided by 2.

1. Determine where code and data will go in memory.
Code at $2000, data at $1000.

2. Determine type of variables to use.
Because data will be between 0 and 255, can use unsigned 8-bit numbers.

3. Draw a picture of the data structures in memory:

COUNT

table1:

table2:

$1000

16

EE 308 Spring 2010

4. Strategy: Because we are using a table of data, we will need pointers to each table so
we can keep track of which table element we are working on.
Use the X and Y registers as pointers to the tables.

5. Use a simple flow chart to plan structure of program.

START

Divide
by 2

Store
Result

Pointers
Inc

Init

Entry
Get

Pointers

COUNT

table1

table2

X

Y

17

EE 308 Spring 2010

6. Need a way to determine when we reach the end of the table.
One way: Use a counter (say, register A) to keep track of how many elements we have
processed.

More?
YES

L1:

NO

START

STOP

Divide
by 2

Store
Result

Pointers
Inc

Init

Entry
Get

Pointers

COUNT

table1

table2

X

Y

Init
Counter

Dec
Counter

18

EE 308 Spring 2010

7. Add code to implement blocks:

More?
YES

L1:

NO

LDAA #COUNT

LDX #TABLE1
LDY #TABLE2

LDAB 0,X

STAB 0,Y

INX
INY

DECA

LSRB ; unsigned divide

START

STOP SWI

BNE L1

Divide
by 2

Store
Result

Pointers
Inc

Init

Entry
Get

Pointers

COUNT

table1

table2

X

Y

Init
Counter

Dec
Counter

19

EE 308 Spring 2010

8. Write program:

; Program to divide a table by two

; and store the results in memory

prog: equ $2000

data: equ $1000

count: equ 5

org prog ;set program counter to 0x1000

ldaa #count ;Use A as counter

ldx #table1 ;Use X as data pointer to table1

ldy #table2 ;Use Y as data pointer to table2

l1: ldab 0,x ;Get entry from table1

lsrb ;Divide by two (unsigned)

stab 0,y ;Save in table2

inx ;Increment table1 pointer

iny ;Increment table2 pointer

deca ;Decrement counter

bne l1 ;counter != 0 => more entries to divide

swi ;Done

org data

table1: dc.b $07,$c2,$3a,$68,$F3

table2: ds.b count

20

EE 308 Spring 2010

9. Advanced: Optimize program to make use of instructions set efficiencies:

; Program to divide a table by two

; and store the results in memory

prog: equ $1000

data: equ $2000

count: equ 5

org prog ;set program counter to 0x1000

ldaa #count ;Use B as counter

ldx #table1 ;Use X as data pointer to table1

ldy #table2 ;Use Y as data pointer to table2

l1: ldab 1,x+ ;Get entry from table1; then inc pointer

lsrb ;Divide by two (unsigned)

stab 1,y+ ;Save in table2; then inc pointer

dbne a,l1 ;Decrement counter; if not 0, more to do

swi ;Done

org data

table1: dc.b $07,$c2,$3a,$68,$F3

table2: ds.b count

21

EE 308 Spring 2010

TOP-DOWN PROGRAM DESIGN

• PLAN DATA STRUCTURES IN MEMORY

• START WITH A LARGE PICTURE OF PROGRAM STRUCTURE

• WORK DOWN TO MORE DETAILED STRUCTURE

• TRANSLATE STRUCTURE INTO CODE

• OPTIMIZE FOR EFFICENCY —
DO NOT SACRIFICE CLARITY FOR EFFICIENCY

22

