
EE 308 Spring 2010

Examples of Using the Stack

Consider the following:

2000 org $2000

2000 cf 20 00 lds #$2000

2003 ce 01 23 ldx #$0123

2006 cc ab cd ldd #$abcd

2009 34 pshx

200a 36 psha

200b 37 pshb

200c 07 04 bsr delay

200e 33 pulb

200f 32 pula

2010 30 pulx

2011 3f swi

2012 34 delay: pshx

2013 ce 03 e8 ldx #1000

2016 04 35 fd loop: dbne x,loop

2019 30 pulx

201a 3d rts

The following does not work; the RTS goes to the wrong place

2000 org $2000

2000 cf 20 00 lds #$2000

2003 ce 01 23 ldx #$0123

2006 cc ab cd ldd #$abcd

2009 34 pshx

200a 36 psha

200b 37 pshb

200c 07 04 bsr delay

200e 33 pulb

200f 32 pula

2010 30 pulx

2011 3f swi

2012 34 delay: pshx

2013 ce 03 e8 ldx #1000

2016 04 35 fd loop: dbne x,loop

2019 3d rts

1

EE 308 Spring 2010

Using Registers in Assembly Language

• The DP256 version of the MC9S12 has lots of hardware registers

• To use a register, you can use something like the following:

PORTB equ $0001

• It is not practical to memorize the addresses of all the registers

• Better practice: Use a file which has all the register names with their addresses

#include "derivative.inc"

• Here is some of derivative.inc

;*** PORTA - Port A Register; 0x00000000 ***

PORTA: equ $0000 ;*** PORTA - Port A Register; 0x0000 ***

;*** PORTB - Port B Register; 0x0001 ***

PORTB: equ $0001 ;*** PORTB - Port B Register; 0x0001 ***

;*** DDRA - Port A Data Direction Register; 0x0002 ***

DDRA: equ $0002 ;*** DDRA - Port A Data Direction Register; 0x0002 ***

;*** DDRB - Port B Data Direction Register; 0x0003 ***

DDRB: equ $0003 ;*** DDRB - Port B Data Direction Register; 0x0003 ***

2

EE 308 Spring 2010

Using DIP switches to get data into the MC9S12

• DIP switches make or break a connection (usually to ground)

DIP Switches on Breadboard

3

EE 308 Spring 2010

• To use DIP switches, connect one end of each switch to a resistor

• Connect the other end of the resistor to +5 V

• Connect the junction of the DIP switch and the resistor to an input port on the MC9S12

• The Dragon12-Plus has eight dip switches which are already connected to Port H (PTH).

• The four least significant bits of PTH are also connected to push-button switches.

– If you want to use the push-button switches, make sure the DIP switches are in
the OFF position.

• When the switch is open, the input port sees a logic 1 (+5 V)

• When the switch is closed, the input sees a logic 0 (0.22 V)

4

EE 308 Spring 2010

Looking at the state of a few input pins

• Want to look for a particular pattern on 4 input pins

– For example want to do something if pattern on PH3-PH0 is 0110

• Don’t know or care what are on the other 4 pins (PH7-PH4)

• Here is the wrong way to do it:

ldaa PTH

cmpa #$06

beq task

• If PH7-PH4 are anything other than 0000, you will not execute the task.

• You need to mask out the Don’t Care bits before checking for the pattern on the bits
you are interested in

– To mask out don’t care bits, AND the bits with a mask which has 0’s in the don’t
care bits and 1’s in the bits you want to look at.

ldaa PTH

anda #$0F

cmpa #$06

beq task

• Now, whatever pattern appears on PH7-4 is ignored

5

EE 308 Spring 2010

Using an MC9S12 output port to control an LED

• Connect an output port from the MC9S12 to an LED.

Using an output port to control an LED

PA0

When a current flows
through an LED, it
emits light

Resistor, LED, and
ground connected
internally inside
breadboard

6

EE 308 Spring 2010

Making a pattern on a seven-segment LED

• Want to generate a particular pattern on a seven-segment LED:

d

c

g
b

a

f

e

• Determine a number (hex or binary) which will generate each element of the pattern

– For example, to display a 0, turn on segments a, b, c, d, e and f, or bits 0,

1, 2, 3, 4 and 5 of PTB. The binary pattern is 00111111, or $3f.

– To display 0 2 4 6 8, the hex numbers are $3f, $5b, $66, $7d, $7f.

• Put the numbers in a table

• Go through the table one by one to display the pattern

• When you get to the last element, repeat the loop

7

EE 308 Spring 2010

Flowchart to display a pattern of lights on a set of LEDs

no

X < end?

Inc

Pointer

bsr delay

yes

table
X START

ldaa #$ff
staa DDRB

ldx #table

ldaa 0,x

staa PORTB

l1:

l2:

0x3f

0x5b

0x66

0x7d

0x7f

table_end

PORTB
Output

Point to
first entry

Get entry

Output to
PORTB

inx

cpx #table_end

bra l1

blo l2

Wait

8

EE 308 Spring 2010

as12, an absolute assembler for Motorola MCU’s, version 1.2h

; Program to display a pattern on a seven-segment LED

display

#include "hcs12.inc"

2000 prog: equ $2000

1000 data: equ $1000

2000 stack: equ $2000

0005 table_len: equ (table_end-table)

2000 org prog

2000 cf 20 00 lds #stack ; initialize stack pointer

2003 86 ff ldaa #$ff ; Make PORTB output

2005 5a 03 staa DDRB ; 0xFF -> DDRB

2007 ce 10 00 l1: ldx #table ; Start pointer at table

200a a6 00 l2: ldaa 0,x ; Get value

200c 5a 01 staa PORTB ; Update LEDs

200e 07 08 bsr delay ; Wait a bit

2010 08 inx ; point to next

2011 8e 10 05 cpx #table_end ; More to do?

2014 25 f4 blo l2 ; Yes, keep going through table

2016 20 ef bra l1 ; At end; reset pointer

2018 36 delay: psha

2019 34 pshx

201a 86 64 ldaa #100

201c ce 1f 40 loop2: ldx #8000

201f 04 35 fd loop1: dbne x,loop1

2022 04 30 f7 dbne a,loop2

2025 30 pulx

2026 32 pula

2027 3d rts

1000 org data

1000 3f table: dc.b $3f

1001 5b dc.b $5b

1002 66 dc.b $66

1003 7d dc.b $7d

1004 7f dc.b $7F

1005 table_end:

9

EE 308 Spring 2010

Putting a program into EEPROM on the Dragon12-Plus

• EEPROM from 0x400 to 0xFFF

• Program will stay in EEPROM memory even after power cycle

– Data will not stay in RAM memory

• If you put the above program into EEPROM, then cycle power, you will display a
sequency of patterns on the seven-segment LED, but the pattern will be whatever junk
happens to be in RAM

• To make sure you retain you patterns, put the table in the text part of your program,
not the data part

• If you use a variable which needs to be stored in data, be sure you initialize that variable
in your program and not by using dc.b.

10

EE 308 Spring 2010

• Here is the above program with table put into EEPROM

• Also, I have included a variable var which I initialize to $aa in the program

– I don’t use var in the program, but included it to show you how to use a RAM-
based variable

#include "hcs12.inc"

prog: equ $0400

data: equ $1000

stack: equ $2000

table_len: equ (table_end-table)

org prog

lds #stack ; initialize stack pointer

moveb #$aa,var ; initialize var

ldaa #$ff ; Make PORTB output

staa DDRB ; 0xFF -> DDRB

l1: ldx #table ; Start pointer at table

l2: ldaa 0,x ; Get value

staa PORTB ; Update LEDs

bsr delay ; Wait a bit

inx ; point to next

cpx #table_end ; More to do?

blo l2 ; Yes, keep going through table

bra l1 ; At end; reset pointer

delay: psha

pshx

ldaa #100

loop2: ldx #8000

loop1: dbne x,loop1

dbne a,loop2

pulx

pula

rts

table: dc.b $3f

dc.b $5b

dc.b $66

dc.b $7d

dc.b $7F

table_end:

org data

var: ds.b 1 ; Reserve one byte for var

11

