
EE 308 Spring 2010

A software delay

• To enter a software delay, put in a nested loop, just like in assembly.

– Write a function delay(num) which will delay for num milliseconds

void delay(unsigned short num)

{

volatile unsigned short i; /* volatile so compiler does not optimize */

while (num > 0)

{

i = XXXX;

/* ------------------------ */

while (i > 0) /* */

{ /* Want inner loop to delay */

i = i - 1; /* for 1 ms */

} /* */

/* ------------------------ */

num = num - 1;

}

}

• What should XXXX be to make a 1 ms delay?

1

EE 308 Spring 2010

• Look at assembly listing generated by compiler:

19: void delay(unsigned short num)

20: {

0000 6cac [2] STD 4,-SP

21: volatile unsigned short i;

22:

23: while (num > 0)

0002 2015 [3] BRA *+23 ;abs = 0019

--

| 24: {

| 25: i = D_1MS;

| 0004 cc0736 [2] LDD #XXXX

| 0007 6c82 [2] STD 2,SP

| 26: while (i > 0)

| 0009 2005 [3] BRA *+7 ;abs = 0010

| --

| | 27: {

| inner | 28: i = i - 1;

outer | loop | 000b ee82 [3] LDX 2,SP

loop | takes | 000d 09 [1] DEX

| 12 cycles | 000e 6e82 [2] STX 2,SP

| | 0010 ec82 [3] LDD 2,SP

| | 0012 26f7 [3/1] BNE *-7 ;abs = 000b

| | 29: }

| --

| 30: num = num - 1;

| 0014 ee80 [3] LDX 0,SP

| 0016 09 [1] DEX

| 0017 6e80 [2] STX 0,SP

| 0019 ec80 [3] LDD 0,SP

| 001b 26e7 [3/1] BNE *-23 ;abs = 0004

| 31: }

| 32: }

--

001d 1b84 [2] LEAS 4,SP

001f 3d [5] RTS

2

EE 308 Spring 2010

• Inner loop takes 12 cyles.

• One millisecond takes 24,000 cycles
(24,000,000 cycles/sec × 1 millisecond = 24,000 cycles)

• Need to execute inner loop 24,000/12 = 2,000 times to delay for 1 millisecond

void delay(unsigned short num)

{

volatile unsigned short i; /* volatile so compiler does not optimize */

while (num > 0)

{

i = 2000;

/* ------------------------ */

while (i > 0) /* */

{ /* Inner loop takes 12 cycles */

i = i - 1; /* Execute 2000 times to */

} /* delay for 1 ms */

/* ------------------------ */

num = num - 1;

}

}

3

EE 308 Spring 2010

Program to increment LEDs connected to PORTB, and delay for 50 ms
between changes

#include <hidef.h> /* common defines and macros */

#include "derivative.h" /* derivative-specific definitions */

#define D_1MS (24000/12) // Inner loop takes 12 cycles

// Need 24,000 cycles for 1 ms

void delay(unsigned short num);

main()

{

DDRB = 0xff; /* Make PORTB output */

PORTB = 0; /* Start with all off */

while(1)

{

PORTB = PORTB + 1;

delay(50);

}

}

void delay(unsigned short num)

{

volatile unsigned short i; /* volatile so compiler does not optimize */

while (num > 0)

{

i = D_1MS;

while (i > 0)

{

i = i - 1;

}

num = num - 1;

}

}

4

EE 308 Spring 2010

Program to display a particular pattern of lights on PORTB

#include <hidef.h> /* common defines and macros */

#include "derivative.h" /* derivative-specific definitions */

#define D_1MS (24000/12) // Inner loop takes 12 cycles

// Need 24,000 cycles for 1 ms

void delay(unsigned short num);

main()

{

const char table[] = {0x80,0x40,0x20,0x10,

0x08,0x04,0x02,0x01};

int i;

DDRB = 0xff; /* Make PORTB output */

PORTB = 0; /* Start with all off */

i = 0;

while(1)

{

PORTB = table[i];

delay(100);

i = i + 1;

if (i >= sizeof(table)) i = 0; /* Start over when */

/* end is reached */

}

}

5

EE 308 Spring 2010

Operators in C

Operator | Action | example

-----------------------------|---------------------------------------

| | Bitwise OR | %00001010 | %01011111 = % 01011111

& | Bitwise AND | %00001010 & %01011111 = % 00001010

^ | Bitwise XOR | %00001010 ^ %01011111 = % 01010101

~ | Bitwise COMP | ~%00000101 = %11111010

% | Modulo | 10 % 8 = 2

| |

|| | Logical OR | %00000000 || %00100000 = 1

&& | Logical AND | %11000000 && %00000011 = 1

| %11000000 && %00000000 = 0

Setting and Clearing Bits in C

assembly | C | action

----------------------|-------------------------------|---------------------

bset DDRB,$0F | DDRB = DDRB | 0x0f; | Set 4 LSB of DDRB

bclr DDRB,$F0 | DDRB = DDRB & ~0xf0; | Clear 4 MSB of DDRB

| |

l1: brset PTB,$01,l1 | while ((PTB & 0x01) == 0x01) | Wait until bit clear

| |

l2: brclr PTB,$02,l2 | while ((PTB & 0x02) == 0x00) | Wait until bit set

Pointers in C

To read a byte from memory location 0xE000:

var = *(char *) 0xE000;

To write a 16-bit word to memory location 0xE002:

*(int *) 0xE002 = var;

6

EE 308 Spring 2010

Program to count the number of negative numbers in an array in memory

/* Program to count the number of negative numbers in memory *

* Start at 0xE000, go through 0xEFFF *

* Treat the numbers as 8-bit *

*/

#include <hidef.h> /* common defines and macros */

#include "derivative.h" /* derivative-specific definitions */

unsigned short num_neg;/* Make num_neg global so we can find it in memory */

/* Use type int so can hold value larger than 256 */

/* Unsigned because number cannot be negative */

main()

{

char *ptr,*start,*end;

start = (char *) 0xE000; /* Address of first element */

end = (char *) 0xEFFF; /* Address of last element */

num_neg = 0;

for (ptr = start; ptr <= end; ptr = ptr+1) {

if (*ptr < 0) num_neg = num_neg + 1;

}

__asm(swi); /* Exit to DBug-12 */

}

7

EE 308 Spring 2010

MC9S12 Built-In Hardware

• The MC9S12 has lots of useful pieces of hardware built into the chip.

• Different versions of the MC9S12 have different pieces of hardware. Information about
the hardware modules is found in data sheet for the modules.

• We are using the MCMC9S12DP256 chip.

• Here is some of the hardware available on the MCMC9S12DP256:

– General Purpose Input/Output (GPIO) Pins: These pins can be used to
read the logic level on an MC9S12 pin (input) or write a logic level to an MC9S12
pin (output). We have already seen examples of this – PORTA and PORTB. Each
GPIO pin has an associated bit in a data direction register which you use to tell
the MC9S12 if you want to use the GPIO pin as input or output. (For example,
DDRA is the data direction register for PORTA.)

– Timer-Counter Pins: The MC9S12 is often used to time or count events. For
example, to use the MC9S12 in a speedometer circuit you need to determine the
time it takes for a wheel to make one revolution. To keep track of the number
of people passing through a turnstile you need to count the number of times the
turnstile is used. To control the ignition system of an automobile you need to
make a particular spark plug fire at a particular time. The MC9S12 has hardware
built in to do these tasks.

∗ For information, see the ECT 16B8C Block User Guide.

– Pulse Width Modulation (PWM) Pins: To make a motor turn at a particular
speed you need to send it a pulse width modulated signal. This is a signal at a
particular frequency (which differs for different motors), which is high for part of
the period and low for the rest of the period. To have the motor turn slowly, the
signal might be high for 10% of the time and low for 90% of the time. To have the
motor turn fast, the signal might be high for 90% of the time and low for 10% of
the time.

∗ For information, see the PWM 8B8C Block User Guide.

8

EE 308 Spring 2010

– Serial Interfaces: It is often convenient to talk to other digital devices (such
as another computer) over a serial interface. When you connect your MC9S12
to the PC in the lab, the MC9S12 talks to the PC over a serial interface. The
MC9S12 has two serial interfaces: an asynchronous serial interface (called the
Serial Communications Interface, or SCI) and a synchronous serial interface (called
the Serial Peripheral Interface, or SPI).

∗ For informaiton on the SCI, see the MC9S12 Serial Communications In-
terface (SCI) Block User Guide.

∗ For informaiton on the SPI, see the SPI Block User Guide.

– Analog-to-Digital Converter (ADC): Sometimes it is useful to convert a volt-
age to a digital number for use by the MC9S12. For example, a temperature sensor
may put out a voltage proportional to the temperature. By converting the voltage
to a digital number, you can use the MC9S12 to determine the temperature.

∗ For information, see the ATD 10B8C Block User Guide.

• Most of the MC9S12 pins serve dual purposes. For example, PORTT is used for the
timer/counter functions. If you do not need to use PORTT for timer/counter functions,
you can use the pins of PORTT for GPIO. There are registers which allow you to set up
the PORTT pins to use as GPIO, or to use as timer/counter functions. (These are called
the Timer Control Registers).

9

EE 308 Spring 2010

Introduction to the MC9S12 Timer Subsystem

• The MC9S12 has a 16-bit counter that normally runs with an 24 MHz clock.

• Complete information on the MC9S12 timer subsystem can be found in the ECT 16B8C
Block User Guide. ECT stands for Enhanced Capture Timer.

• When you reset the MC9S12, the clock to the timer subsystem is initially turned off to
save power.

– To turn on the clock you need to write a 1 to Bit 7 of register TSCR1 (Timer System
Control Register 1) at address 0x0046.

• The clock starts at 0x0000, counts up (0x0001, 0x0002, etc.) until it gets to 0xFFFF.
It rolls over from 0xFFFF to 0x0000, and continues counting forever (until you turn the
counter off or reset the MC9S12).

• It takes 2.7307 ms (65,536 counts/24,000,000 counts/sec) for the counter to count from
0x0000 to 0xFFFF and roll over to 0x0000.

• To determine the time an event happens, you can read the value of the clock (by reading
the 16-bit TCNT (Timer Count Register) at address 0x0044.

10

EE 308 Spring 2010

ECT_16B8C Block User Guide V01.03

14

1.4 Block Diagram

Figure 1-1 Timer Block Diagram

Prescaler

16-bit Counter

Input capture
Output compare

16-bit
Pulse accumulator B

IOC0

IOC2

IOC1

IOC5

IOC3

IOC4

IOC6

IOC7

PA input
interrupt

PA overflow
interrupt

Timer overflow
interrupt
Timer channel 0
interrupt

Timer channel 7
interrupt

Registers

Bus clock

Input capture
Output compare

Input capture
Output compare

Input capture
Output compare

Input capture
Output compare

Input capture
Output compare

Input capture
Output compare

Input capture
Output compare

Channel 0

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

16-bit
Pulse accumulator A

PB overflow
interrupt

16-bit Modulus CounterModulus counter
Interrupt

11

EE 308 Spring 2010

Timer inside the MC9S12:

 When you enable timer (by writing a 1 to bit 7 of TSCR),

 You can read the counter at address TCNT.

The counter will start at 0, will count to 0xFFFF, then

To enable timer on HC12, set Bit 7 of register TCSR:

 you connect an 24−MHz oscillator to a 16−bit counter.

roll over to 0x0000. It will take 2.7307 ms for this to happen.

bset TSCR1,#$80 TSCR1 = TSCR1 | 0x80;

TEN

(Bit 7 of TSCR1, addr 0x46)

24 MHz
TCNT (addr 0x44)

16−Bit Counter

12

EE 308 Spring 2010

ECT_16B8C Block User Guide V01.03

22

3.3.6 TSCR1 — Timer System Control Register 1

Figure 3-6 Timer System Control Register 1 (TSCR1)

Read or write anytime.

TEN — Timer Enable
0 = Disables the main timer, including the counter. Can be used for reducing power consumption.
1 = Allows the timer to function normally.

If for any reason the timer is not active, there is no ÷64 clock for the pulse accumulator since the ÷64
is generated by the timer prescaler.

TSWAI — Timer Module Stops While in Wait
0 = Allows the timer module to continue running during wait.
1 = Disables the timer module when the MCU is in the wait mode. Timer interrupts cannot be used

to get the MCU out of wait.
TSWAI also affects pulse accumulators and modulus down counters.

TSFRZ — Timer and Modulus Counter Stop While in Freeze Mode
0 = Allows the timer and modulus counter to continue running while in freeze mode.
1 = Disables the timer and modulus counter whenever the MCU is in freeze mode. This is useful

for emulation.
TSFRZ does not stop the pulse accumulator.

TFFCA — Timer Fast Flag Clear All
0 = Allows the timer flag clearing to function normally.
1 = For TFLG1($0E), a read from an input capture or a write to the output compare channel

($10–$1F) causes the corresponding channel flag, CnF, to be cleared. For TFLG2 ($0F), any
access to the TCNT register ($04, $05) clears the TOF flag. Any access to the PACN3 and
PACN2 registers ($22, $23) clears the PAOVF and PAIF flags in the PAFLG register ($21).
Any access to the PACN1 and PACN0 registers ($24, $25) clears the PBOVF flag in the
PBFLG register ($31). This has the advantage of eliminating software overhead in a separate
clear sequence. Extra care is required to avoid accidental flag clearing due to unintended
accesses.

Register offset: $_06

BIT7 6 5 4 3 2 1 BIT0

R
TEN TSWAI TSFRZ TFFCA

0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

13

EE 308 Spring 2010

Block User Guide — S12ECT16B8CV1/D V01.03

21

3.3.4 OC7D — Output Compare 7 Data Register

Figure 3-4 Output Compare 7 Data Register (OC7D)

Read or write anytime.

A channel 7 output compare can cause bits in the output compare 7 data register to transfer to the timer
port data register depending on the output compare 7 mask register.

3.3.5 TCNT — Timer Count Register

Figure 3-5 Timer Count Register (TCNT)

The 16-bit main timer is an up counter.

A full access for the counter register should take place in one clock cycle. A separate read/write for high
byte and low byte will give a different result than accessing them as a word.

Read anytime.

Write has no meaning or effect in the normal mode; only writable in special modes (test_mode = 1).

The period of the first count after a write to the TCNT registers may be a different size because the write
is not synchronized with the prescaler clock.

Register offset: $_03

BIT7 6 5 4 3 2 1 BIT0

R
OC7D7 OC7D6 OC7D5 OC7D4 OC7D3 OC7D2 OC7D1 OC7D0

W

RESET: 0 0 0 0 0 0 0 0

Register offset: $_04-$_05

BIT15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 BIT0

R tcnt
15

tcnt
14

tcnt
13

tcnt
12

tcnt
11

tcnt
10

tcnt
9

tcnt
8

tcnt
7

tcnt
6

tcnt
5

tcnt
4

tcnt
3

tcnt
2

tcnt
1

tcnt
0W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14

EE 308 Spring 2010

• To put in a delay of 2.7307 ms, you could wait from one reading of 0x0000 to the next
reading of 0x0000.

• Problem: You cannot read the TCNT register quickly enough to make sure you will see
the 0x0000.

TCNT == 0x0000:

Problem: You might see 0xFFFF and 0x0001, and miss 0x0000

 bne l1

To put in a delay for 2.7307 ms, could watch timer until

 bset TSCR1,#$80 TSCR1 = TSCR1 | 0x80;
l1: ldd TCNT while (TCNT != 0x0000) ;

16−Bit Counter

TEN
24 MHz

TCNT (addr 0x44)

(Bit 7 of TSCR1, addr 0x46)

15

EE 308 Spring 2010

• Solution: The MC9S12 has built-in hardware with will set a flip-flop every time the
counter rolls over from 0xFFFF to 0x0000.

• To wait for 2.7307 ms, just wait until the flip-flop is set, then clear the flip-flop, and
wait until the next time the flip-flop is set.

• You can find the state of the flip-flop by looking at bit 7 (the Timer Overflow Flag
(TOF) bit) of the Timer Flag Register 2 (TFLG2) register at address 0x004F.

• You can clear the flip-flop by writing a 1 to the TOF bit of TFLG2.

Solution: When timer overflows, latch a 1 into a flip−flop.

Now when timer overflows (goes from 0xFFFF to 0x0000),

Bit 7 of TFLG2 register is set to one. Can clear

register by writting a 1 to Bit 7 of TFLG register.

 Bit 7 of TFLG2 for a write)
(Note: Bit 7 of TFLG2 for a read is different than

 ldaa #$80
 staa TFGL2 ; Clear TOF flag

while ((TFLG2 & 0x80) == 0) ; // Wait for TOF
TFLG2 = 0x80; // Clear TOF

l1: brclr TFLG2,#$80,l1 ; Wait until Bit 7 of TFLG2 is set
 bset TSCR1,#$80 ; Enable timer

TSCR1 = TSCR1 | 0x80; //Enable timer

Overflow

D

R

Q

VCC

16−Bit Counter

TIMER OVERFLOW INTERRUPT

TOF
Read

TEN

Write
TOF

(Bit 7 of TFLG2, addr 0x4F)

24 MHz
TCNT (addr 0x44)

(Bit 7 of TFLG2, addr 0x4F)

(Bit 7 of TSCR1, addr 0x46)

16

EE 308 Spring 2010

Block User Guide — S12ECT16B8CV1/D V01.03

27

3.3.13 TFLG2 — Main Timer Interrupt Flag 2

Figure 3-13 Main Timer Interrupt Flag 2 (TFLG2)

TFLG2 indicates when interrupt conditions have occurred. To clear a bit in the flag register, write the bit
to one.

Read anytime. Write used in clearing mechanism (set bits cause corresponding bits to be cleared).

Any access to TCNT will clear TFLG2 register if the TFFCA bit in TSCR register is set.

TOF — Timer Overflow Flag
Set when 16-bit free-running timer overflows from $FFFF to $0000. This bit is cleared automatically
by a write to the TFLG2 register with bit 7 set. (See also TCRE control bit explanation.)

Register offset: $_0F

BIT7 6 5 4 3 2 1 BIT0

R
TOF

0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

17

EE 308 Spring 2010

• Another problem: Sometimes you may want to delay longer than 2.7307 ms, or time
an event which takes longer than 2.7307 ms. This is hard to do if the counter rolls over
every 2.7307 ms.

• Solution: The MC9S12 allows you to slow down the clock which drives the counter.

• You can slow down the clock by dividing the 24 MHz clock by 2, 4, 8, 16, 32, 64 or 128.

• You do this by writing to the prescaler bits (PR2:0) of the Timer System Control
Register 2 (TSCR2) Register at address 0x004D.

slow down the clock:

2.7307 ms will be too short if you want to see lights flash.

PR2:0 Divide Freq Overflow Rate

000 1 24 MHz 2.7307 ms
001 2 12 MHz 5.4613 ms
010 4 6 MHz 10.9227 ms
011 8 3 MHz 21.8453 ms
100 16 1.5 MHz 43.6907 ms
101 32 0.75 MHz 87.3813 ms

You can slow down clock by dividing it before you send it to

110 64 0.375 MHz 174.7627 ms
111 128 0.1875 MHz 349.5253 ms

the 16−bit counter. By setting prescaler bits PR2,PR1,PR0 of TSCR2 you can

bset TSCR1,#$80

staa TSCR2

TSCR1 = TSCR1 | 0x80;

To set up timer so it will overflow every 87.3813 ms:

ldaa #$05 TSCR2 = 0x05;

VCC

16−Bit Counter

TIMER OVERFLOW INTERRUPT

Prescaler
TEN

PR[2..0]

Overflow

D Q
TOF
Read

R

Write
TOF

(Bit 7 of TFLG2, addr 0x4F)

24 MHz
TCNT (addr 0x44)

(Bit 7 of TFLG2, addr 0x4F)

(Bit 7 of TSCR1, addr 0x46)

(Bits 2−0 of TSCR2, addr 0x4D)

18

EE 308 Spring 2010

Block User Guide — S12ECT16B8CV1/D V01.03

25

3.3.10 TIE — Timer Interrupt Enable Register

Figure 3-10 Timer Interrupt Enable Register (TIE)

Read or write anytime.

The bits in TIE correspond bit-for-bit with the bits in the TFLG1 status register. If cleared, the
corresponding flag is disabled from causing a hardware interrupt. If set, the corresponding flag is enabled
to cause a interrupt.

C7I–C0I — Input Capture/Output Compare “x” Interrupt Enable

3.3.11 TSCR2 — Timer System Control Register 2

Figure 3-11 Timer System Control Register 2 (TSCR2)

Read or write anytime.

TOI — Timer Overflow Interrupt Enable
0 = Interrupt inhibited
1 = Hardware interrupt requested when TOF flag set

TCRE — Timer Counter Reset Enable
This bit allows the timer counter to be reset by a successful output compare 7 event. This mode of
operation is similar to an up-counting modulus counter.

0 = Counter reset inhibited and counter free runs
1 = Counter reset by a successful output compare 7

If TC7 = $0000 and TCRE = 1, TCNT will stay at $0000 continuously. If TC7 = $FFFF and TCRE =
1, TOF will never be set when TCNT is reset from $FFFF to $0000.

PR2, PR1, PR0 — Timer Prescaler Select

Register offset: $_0C

BIT7 6 5 4 3 2 1 BIT0

R
C7I C6I C5I C4I C3I C2I C1I C0I

W

RESET: 0 0 0 0 0 0 0 0

Register offset: $_0D

BIT7 6 5 4 3 2 1 BIT0

R
TOI

0 0 0
TCRE PR2 PR1 PR0

W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

19

EE 308 Spring 2010

ECT_16B8C Block User Guide V01.03

26

These three bits specify the number of ÷2 stages that are to be inserted between the bus clock and the
main timer counter.

The newly selected prescale factor will not take effect until the next synchronized edge where all
prescale counter stages equal zero.

3.3.12 TFLG1 — Main Timer Interrupt Flag 1

Figure 3-12 Main Timer Interrupt Flag 1 (TFLG1)

TFLG1 indicates when interrupt conditions have occurred. To clear a bit in the flag register, write a one
to the bit.

Use of the TFMOD bit in the ICSYS register ($2B) in conjunction with the use of the ICOVW register
($2A) allows a timer interrupt to be generated after capturing two values in the capture and holding
registers instead of generating an interrupt for every capture.

Read anytime. Write used in the clearing mechanism (set bits cause corresponding bits to be cleared).
Writing a zero will not affect current status of the bit.

When TFFCA bit in TSCR register is set, a read from an input capture or a write into an output compare
channel ($10–$1F) will cause the corresponding channel flag CnF to be cleared.

C7F–C0F — Input Capture/Output Compare Channel “n” Flag.
C0F can also be set by 16 - bit Pulse Accumulator B (PACB). C3F - C0F can also be set by 8 - bit pulse
accumulators PAC3 - PAC0.

Table 3-4 Prescaler Selection

PR2 PR1 PR0 Prescale Factor
0 0 0 1

0 0 1 2

0 1 0 4

0 1 1 8

1 0 0 16

1 0 1 32

1 1 0 64

1 1 1 128

Register offset: $_0E

BIT7 6 5 4 3 2 1 BIT0

R
C7F C6F C5F C4F C3F C2F C1F C0F

W

RESET: 0 0 0 0 0 0 0 0

20

EE 308 Spring 2010

Setting and Clearing Bits in C

• To put a specific number into a memory location or register (e.g., to put 0x55 into
PORTA):

movb #$55,PORTA PORTA = 0x55;

• To set a particular bit of a register (e.g., set Bit 4 of PORTA) while leaving the other
bits unchanged do a bitwise OR of the register and a mask which has a 1 in the bit(s)
you want to set, and a 0 in the other bits:

bset PORTA,#$10 PORTA = PORTA | 0x10;

• To clear a particular bit of a register (e.g., clear Bit 5 of PORTA) while leaving the
other bits unchanged do a bitwise AND of the register and a mask which has a 0 in
the bit(s) you want to clear, and a 1 in the other bits. You can construct this mask
by complementing a mask which has a 1 in the bit(s) you want to set, and a 0 in the
other bits:

bclr PORTA,#$20 PORTA = PORTA & 0xDF;

PORTA = PORTA & ~0x20;

Using ~0x20 is probably better than using 0xDF because it is less likely that you will
make a mistake when complementing 0x20 in your head.

• To change several bits of a register, AND the register with 1’s in the bits you want to
leave unchanged, then OR the result with 1’s in the bits you want to set, and 0’s in
the bits you want to clear. For example, To set bits 2 and 0, and clear bit 1 (write 101
to bits 2-0) of TSCR2, do the following:

bclr TSCR2,#$02; | TSCR2 = (TSCR2 & ~0x02) | 0x05;

bset TSCR2,#05; |

• Write to all bits of a register when you know what all bits should be, such
as when you initialize it. Set or clear bits when you want to change only
one or a few bits and leave the others unchanged.

21

