
EE 308 Spring 2010

Motor Control

Consider a motor which has a maximum speed of 5000 RPM. The speed vs. duty cycle
may look something like this:

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Duty Cycle (%)

Sp
ee

d 
(R

PM
)

Motor Speed vs. Duty Cycle

The motor doesn’t start rotating until it is driven with a 10% duty cycle, after which it will
increase speed linearly with the increase in duty cycle.

If the motor is initially stopped, and is then turned on (with 100% duty cycle), the speed
vs. time might look something like this (the step response of the motor):

0 1 2 3 4 5 6
0

1000

2000

3000

4000

5000

6000

t (seconds)

Sp
ee

d 
(R

PM
)

Step Response of Motor

1



EE 308 Spring 2010

We will control the motor by adjusting the duty cycle with the MC9S12. We will do
this by measuring the speed and updating the duty cycle on a regular basis. Let’s do the
adjustments once every 8 ms. This means that we will adjust the duty cycle, wait for 8 ms
to find the new speed, then adjust the duty cycle again. How much change in speed will
there be in 8 ms? The motor behaves like a single time constant system, so the equation for
the speed as a function of time is:

S(t) = Sf + e−t/τ (Si − Sf )

where Si is the speed at time 0, Sf is the speed at time ∞, and τ is the time constant of the
system. With a duty cycle of D, the final speed will be:

Sf = αD + S0

where S0 is the speed the motor would turn with a 0% duty cycle if the speed continued
linearly for duty cyclces less than 10%, and α is the slope of the speed vs. duty cycle line
(5000/0.9 in this example).

Here I assume that the time constant of the small motors we are using is about 1 second
— i.e., it takes about 5 seconds (5 time constants) for the motor to go from a dead stop to
full speed. If T = 8 ms, the motor will have changed its speed from Si to

S(T ) = Sf + e−T/τ (Si − Sf )

S(T ) = (αD + S0)(1− e−T/τ ) + e−T/τSi

S[n] = (αD + S0)(1− e−T/τ ) + e−T/τS[n− 1]

where S[n] is the speed at the nth cycle.

Consider an integral controller where the duty cycle is adjusted according to:

D[n] = D[n− 1] + k(Sd − Sm[n])

We can simulate the motor response by iterating through these equations. Start with
Sm[1] = 0, D[1] = 0, and Sd = 1500. Then we calculate:

Sm[n] = (αD[n− 1] + S0)(1− e−T/τ ) + e−T/τSm[n− 1]

D[n] = D[n− 1] + k(Sd − Sm[n])

In MATLAB we can simulate this as:

2



EE 308 Spring 2010

alpha = 5000/0.9; % Max speed 5,000 RPM; turns on at 10% duty cycle

Sd = 1500; % Desired Speed

S0 = -alpha*0.1; % Speed motor would turn at 0% duty cycle if linear

tau = 1; % One second time constant

T = 8e-3; % Update rate is 8 ms

k = 1e-7; % Constant for integral control

Sm = 0; % Measured speed starts at 0

D = 0.1; % Duty cycle starts at 10%

t = 0;

ee = exp(-T/tau); % Precalculate this commonly used value

for n=2:1000 % Make end value bigger if needed

Sm(n)=(alpha*D(n-1) + S0)*(1-ee) + ee*Sm(n-1);

D(n) = k*(Sd - Sm(n)) + D(n-1);

t(n) = t(n-1)+T;

end

plot(t,Sm);

By changing the value of k we can see how this parameter affects the response. Here is
the curve for k = 1.0× 10−7:

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

1600

1800

2000

T (seconds)

Sp
ee

d 
(R

PM
)

Integral Control, k = 1 × 10−7

With this value of k, it will take about 1 minute for the motor to get to the desired speed.

3



EE 308 Spring 2010

Here is the curve for k = 1.0× 10−6:

0 2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

1000

1200

1400

1600

1800

T (seconds)

Sp
ee

d 
(R

PM
)

Integral Control, k = 1 × 10−6

Now it takes about 10 seconds to get to the desired speed, with a little bit of overshoot.

Let’s try k = 1.0× 10−5:

0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

T (seconds)

Sp
ee

d 
(R

PM
)

Integral Control, k = 1 × 10−5

4



EE 308 Spring 2010

This gets to the desired value more quickly, but with a lot of oscillation. Let’s increase k to
10−4.

0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

T (seconds)

Sp
ee

d 
(R

PM
)

Integral Control, k = 1 × 10−4

For this value of k there is a significant oscillation. However, a real motor will not act like
this. If we look at the duty cycle vs time, we see:

0 1 2 3 4 5 6 7 8 9 10
−150

−100

−50

0

50

100

150

200

250

T (seconds)

Du
ty

 C
yc

le

Integral Control, k = 1 × 10−4

To get this oscillating response, the duty cycle must go to over 100%, and below 0%, which
is clearly impossible. To get the response we expect in the lab, we need to limit the duty
cycle to remain between 20% and 100%. Thus, we change our simulation to be:

5



EE 308 Spring 2010

alpha = 5000/0.9; % Max speed 5,000 RPM; turns on at 10% duty cycle

Sd = 1500; % Desired Speed

S0 = -alpha*0.1; % Speed motor would turn at 0% duty cycle if linear

tau = 1; % One second time constant

T = 8e-3; % Update rate is 8 ms

k = 1e-7; % Constant for integral control

Sm = 0; % Measured speed starts at 0

D = 0.1; % Duty cycle starts at 10%

t = 0;

ee = exp(-T/tau); % Precalculate this commonly used value

for n=2:1000 % Make end value bigger if needed

Sm(n)=(alpha*D(n-1) + S0)*(1-ee) + ee*Sm(n-1);

if (Sm(n) < 0) Sm(n) = 0; end; % Motor speed cannot be less than 0

D(n) = k*(Sd - Sm(n)) + D(n-1);

if (D(n) > 1.0) D(n) = 1.0; end; % Keep DC between 20% and 100%

if (D(n) < 0.2) D(n) = 0.2; end;

t(n) = t(n-1)+T;

end

plot(t,Sm);

When we use this to simulate the motor response, we get:

0 2 4 6 8 10
0

500

1000

1500

2000

T (seconds)

Sp
ee

d 
(R

PM
)

Integral Control, k = 1 × 10−4

0 2 4 6 8 10
0

20

40

60

80

100

120

T (seconds)

Du
ty

 C
yc

le

Integral Control, k = 1 × 10−4

In your program for Lab 5, you will use a Real Time Interrupt with an 8 ms period. In
the RTI interrupt service routine, you will measure the speed, and set the duty cycle based
on the measured speed. Your ISR will look something like this:

6



EE 308 Spring 2010

void INTERRUPT rti_isr(void)

{

Code to read potentiometer voltage and convert into RPM

Code to measure speed Sm in RPM

Code which sets duty cycle to

DC = DC + k*(Sd-Sm)

if (DC > 1.0) DC = 1.0;

if (DC < 0.2) DC = 0.2;

Code which writes the PWM Duty Cycle Register

to generate duty cycle DC.

Code which clears RTI flag

}

In the main program, you will display the measured speed, desired speed, and duty cycle
on the LCD display.

Your values of k will probably be different than the values in these notes because speed
vs. duty cycle, time constant, and maximum speed will most likely be different than the
values I used.

7


