EE 308 New Mexico Tech Spring 2012

Lab 2 — Part 3
Assembly Language Programming and MC9S12 Ports

Introduction and Objectives

In this week’s lab you will write an assembly laage program to display various
patterns on the eight individual LEDs on your Dnat@-Plus board. The displayed
pattern will be based on the state of two bitshef@nboard DIP switch. You will also
start using subroutines, and investigate the stadkstack pointer, and learn how to load
your program into EEPROM so the program will remainyour board after a power
cycle.

The program for this lab will display four differgpatterns on the LED display
connected to Port B. You will use the state of titand O of the onboard DIP switch to
select which of the four patterns to display.

1. Preab

Write a program to set up Port B as an eight bipatuport (be sure to disable the seven-
segment displays, and to enable the individual LE&3Syou did in last week’s lab), and
to implement (i) a binary up counter, (i) a si@ibit, (iii) a Johnson counter, and (iv) a
Ford Thunderbird style turn signal based on theesiathe DIP switches. Insert a 100
ms delay between updates of the display. Writel#lay as a subroutine. Be sure to
initialize the stack pointer in you program.

(Note: you will be referring to a number of MC9S&gjisters in this and future programs.
It is tedious and error-prone to look up and etiteraddresses of the registers each time
you write a new program. There is a file when gtart a new project called
'directive.inc’ that links to a file which has a&fiof all registers and their addresses for
the 9S12DP256 version of the MC9S12 microcontrolfeyou include that file in your
program (by including the line INCLUDE ’directivad’ as the first line of your

program), you can refer to all registers by nantieerathan having to look up their
addresses.)

1. Write a subroutine to implement the binary uprder, have the LEDs count 0O, 1, 2, 3,
4,Itshould take 256 counts from the teld.EDs are off until the next time all are
off again.

2. Write a subroutine to display a patternFddRTBwhich looks the figure below.
There is an easy way to calculate this. Start twihvariables, one with a value of 0x80
and the other with a value of 0x01. OR the twoaldes together to get 0x81, the first

EE 308 New Mexico Tech Spring 2012

pattern in the sequence. Then rotate the firsalbba right by one (to get 0x40), and
rotate the second variable left by one (to get px@R these two together to get 0x42,
the second pattern in the sequence. Continuerrgtidite first variable to the right, the
second to the left, and ORing the two together.

3. Write a subroutine to generate the next pattethe sequence for an eight-bit Johnson
counter. The procedure to do this is as followsft3e present pattern to the right by
one bit. The most significant bit of the next pattes the inverse of the least significant
bit of the present pattern. The number to congeirt accumulator A, and the next pattern
in the sequence is returned in accumulator A. Sttioutine should return with all
registers, except A, the same as when the subeowiis called, so use the stack to save
and restore any registers you need to use to ingslethe subroutine. The starting
pattern is 00000000;

4. Write a subroutine to take the next entry owa tdible, write it td>ORTB and update
the index into the table. Here is an example oftwimatable might look like:

table_len: equ (table_end-table)

org data
table: dc.b $00, $01, $02, $04, $08, $10, $20, $80
table_end:

The index of the number to be displayed is passedc¢umulator A. Your code should
write the table entry corresponding to that indeR©ORTE Return the index to the next
table element in accumulator A. (For example, dusculator A were 5, you would write
the fifth element of the table, $10,R®ORTRB and return a 6.) Make sure that the index
stays between 0 and table_len - 1. The subroutioeld return with all registers, except
A, the same as when the subroutine was calledssthe stack to save and restore any
registers you need to use to implement the subreukiill out the table such that you get
the following pattern. (This is called the TBirdillights, because the old For
Thunderbirds displayed this type of pattern foiirthern signals. Current TBirds no
longer display this type of pattern.)

EE 308 New Mexico Tech Spring 2012

©)

CHONONORON NONONCNC)
OHONONORON N NONCNC)
OO0OO0OO0CCeeeO O
OO0OO0O0CCeeeoe O
(N N N NONONONCNCNC)
[N N NONONONONCONCNC)
[N NONONONONONONCONC)
[NONONONONCNONG)

5. Write the program that will display four differtgpatterns on the LED display
connected to Port B. You will use the state of bitsnd O of the onboard DIP switch to
select which of the four patterns to display. Watprogram to set up Port B as an eight
bit output port (be sure to disable the seven-segutisplays, and to enable the
individual LEDs), and to implement (i) a binary opunter, (ii) a shifting bit, (iii) a
Johnson counter, and (iv) a Ford Thunderbird dtyle signal based on the state of the
DIP switches. Insert a 100 ms delay between upddti display. Write the delay as a
subroutine. Be sure to initialize the stack poimeyou program. Use four variables to
hold information on the four patterns. Initializeese four variables to the first pattern in
the sequence. You should have a loop which chibekBIP switches connected to Port
H. If bit 7 of the DIP switches is high, end thepoand exit back to DBug-12 with a SWI
instruction. If bit 7 of the DIP switches is lowheck bits 0 and 1 to determine what
pattern to display:

PH1 PHO Pattern
0 0 Binary Up Counter
0 1 Pattern from Part 2
1 0 Johnson Counter
1 1 TBird Turn Signal

For example, if bits 1 and 0 of Port H are 10, laadumulator A with the Johnson
Counter variable, call the Johnson Counter submeutind save the returned accumulator
A into the Johnson Counter variable. Call the Dalalgroutine, then loop back to check
the DIP switches again.

2. ThelLab

1. Implement the program described in the preliayou have difficulty getting your
program to work, start by trying to implement onadtion only say, the binary counter.
Once this works, start working on your next funeioVerify that all the functions work
correctly.

2. The MC9S12 has EEPROM (Electrically ErasablggRnmmable Read Only Memory)
functionality.

EE 308 New Mexico Tech Spring 2012

If you put your program into EEPROM the programl weimain there when you turn off
power.

(a) The EEPROM is located at address 0x400. Yoyuwsrchange the origin
statement of your assembly language program, gessemble, and reload your
program. (Loading programs into EEPROM takes adotigne than loading
programs into RAM. DBug-12 needs to tell the Hybgertinal to wait while it
programs some EEPROM bytes before it sends theseéxif bytes to program. It
uses a protocol called Xon/Xoff to do this. MakeesHyperterminal is set up to
use Xon/Xoff. Use the MD command to verify that ypuogram was correctly
loaded into EEPROM. Type G 400 to run your progoarnof EEPROM. It
should work the same as it did when you ran itadlRAM. (Try it.)

You can power cycle your board, and then type G 488 again your program
will run correctly. (Try it. The TBird pattern mayot work correctly. The reason
for this and the solution is discussed below.)

For some applications it would be nice if you could your program without
having to type G 400 if your board is controllingadot, and no computer is
connected to it, it would be impossible to staet pinogram by typing G 400.
DBug12 has a special mode to allow you to run gnqaom out of EEPROM
without having to type G 400. If you set the twatshes on the LOAD DIP
switch to Jump to EEPROM mode (Switch 2 on, Switasff), and power cycle
the board (or push the reset button), the progrdhtuwm immediately out of
EEPROM. (Try it.)

You will notice that the program runs much slowetually, six times slower than
it did when you ran it by typing G 400. This is base DBug12 does some
system initialization which is bypassed when yow yaur program directly from
EEPROM. In particular, the Dragon12-Plus boarddra8 MHz clock, and the
MC9S12 runs at half the clock frequency, or 4 MHAze MC9S12 has a built in
phases lock loop (PLL) which allows the chip to giate a faster clock internally,
and run with a 24 MHz E-clock frequency. In ordeget the chip to run at the
higher frequency, you must do the initializationigthenables the PLL. Here is
some code which will do that initialization (adappfeom the Dragon12-Plus
Reference Manual):

; PLL code for 24MHz bus speed from an 8 crystal
sei ; disable interrupts
bclr CLKSEL,%10000000 ; clear bit 7, clk derived from oscclk
bsetPLLCTL,%01000000 ; Turn PLL on, bit 6=1 PLL on, =0 off
movb#$055YNR ; 5+1=6 multiplier
movb#$01REFDV ; divisor=1+1=2,8*2*6/2=48MHz PLL

; freq, forBMHz crystal

wait_b3 brclr CRGFLG%00001000,wait_b3 ; wait until bit3=1

bsetCLKSEL,%10000000 ; derive clock from PLL

EE 308 New Mexico Tech Spring 2012

(b) Add the above code to your program, right atterorg $400 line and before
the first line of your program. Load this new codi® EEPROM. (Be sure to
move SW1 of the LOAD DIP switch down in order td back to the DBug12
monitor so you can load new code into memory.) Mosve SW1 of the LOAD
DIP SWITCH to the up position, power cycle your fshand your program
should run at the same speed it did when runnin@olAM.

(c) Another problem with running out of EEPROM &t data which is loaded
when you load your program is not present whensgatt your program out of
EEPROM after a power cycle. For example, if ther@iRiattern is put into RAM,
when you turn power off that pattern is lost, arftew you turn the power back on
and start running the program from EEPROM, an iretrpattern is displayed.
To fix this, put the table into the program sectadrmemory rather than the data
section. In this way, the table is programmed BEFPROM as well your
program. Now if you power cycle the board, the ¢abith the TBird pattern is
still there. When you put a program into EEPROMyasariables which change
should be put into the data section. Also, you rteeditialize these variables in
the program rather than using a dc.b directive.

Note: The document readme EEPROM.pdf which came on RA®ON12-Plus CD

says that you need to convert your S1 code (irstefile) to S2 code to successfully
load a program into EEPROM. This is because the $IQEEPROM must be
programmed with an even number of bytes, and nrigrtoigrammed starting at an even
address. However, | have had no problem loadinggram which starts on an odd
address or has an odd number of bytes. | think tifaeén DBug12 sees that a user wants
to load a program which starts on an odd addreseriains an odd number of bytes, into
EEPROM, it automatically adds the bytes neededakenthe program start on an even
address or to contain an even number of bytesadfhave trouble getting an EEPROM
program to load correctly, you should try convegtyour S1 code to S2 code as
discussed in the readme EEPROM.pdf document.

