EE 308 New Mexico Tech Spring 2012

Lab 3 —Part 3
MC9S12 Timer Interrupt Capture and Output Compare

Introduction and Objectives

Last week you wrote programs using the MC9S12 Tiowerflow Interrupt and Real
Time Interrupt. This week you will work with thenter Input Capture and Timer Output
Compare functions. To demonstrate their usage ybaesign a program to measure
your reaction time and display it on the 7-seg ldigp

1. ThelLab

1. Start a new project. This time select "floalHEE32".
2. Start with the following program, which is justio-nothing infinite loop:

#include”derivative.h”
#include”vectors12.h”
#defineTRUE 1
main ()
{

while (TRUE)

{

}
}

3. Add to your program a global 16-bit variableleal eact i on_ti nme. Add the
following Real Time Interrupt ISR, and add codette main part of the program to
generate a real time interrupt every 2ms. In yoamnoop, set eacti on_ti me to a
known value (e.g., 0x1234), and verify that thisasrectly displayed on the seven
segment LEDs.

asm(wai);

Program 1 Program required to display characters on seegment LEDs.

interruptvoid RTI_isr (void)
{
static unsigned chaligit = 0;
const chac2seven_seg [] = { Ox3F, 0x06, 0x5B, 0x4F, Ox66D,
0x7D, 0x07, Ox7F, Ox6F, Ox77, Ox7c,
0x58, 0x5e, 0x79, 0x71};

EE 308 New Mexico Tech Spring 2012

switch (digit) {

casel : PTP = OxOE;
PORTB = c2sevenseqg [(reaction_time >>12)&0x0F |;
break

casel : PTP = 0x0D;
PORTB = c2seve_seg [(reaction_time >>8)&0x0F];
break

case2 : PTP = Ox0B;
PORTB = c2seven_seg [(reaction_time >>4)&0x0F];
break

case3 : PTP = 0x07,
PORTB = c2seven_seg [(reaction_time)&0xO0F |;
break

}

digit = (digit +1) % 4;

CRGFLG = 0x80;

4. Now measure your reaction time and display ithen7-seg display. You will set up
the hardware so that when Key 1 (of the 4 x 4 kdygrathe lower right of the Dragon12
board) is pressed, the LED labeled RELAY (just abthe 4x4 keypad) will turn on, and
the time of the Key 1 press will be captured. WB&42 of the push-button switches
(below the DIP switches on the lower left sidelef Dragon12 board) is pushed, the time
of that push will be captured. You will have a [adotner press Key 1 to turn on the
RELAY LED. When you see the RELAY LED turn on, yaill press SW2 as quickly

as possible. By subtracting the two times (SW2®minus Key 1 press), you can
measure your reaction time, then display it (inlisgconds) on the seven-segment LEDS.
After completing this once, pressing SW5 will retbet system so you can measure your
reaction time again. To set up the hardware, yemdrio make a Key 1 press generate a
falling edge on PTO and make an SW2 press genafaléng edge on PT2. You will

use interrupts to capture the times of the falédges of PTO and PT2. After the falling
edge of PT2, you will display the time on the sesegment LEDs. After pushing SW5
(which is connected to PTHO) you will start the ggss over again.

(&) Run a wire from PA4 to PTO. Connect a 10 Kstes from PTO to VCC. In
your program, make Bit O of Port A an output partd write a O to it. Make Bit 4
of Port A an input port. Make Bit O of Port T aiput port. When this is done,
PTO will be high when Key 1 is not pressed. Whe&yK is pressed on the
keypad, PTO will go low.

(b) Make sure all DIP switches are off. Run a viicen PH3 to PT2. In your
program make Bit 3 of Port H an input port. Make2Bof Port T an input port.
When this is done, PT2 will be high when SW2 ispraétssed. When SW2 is
pressed, PT2 will go low.

EE 308 New Mexico Tech Spring 2012

(c) In the setup part of your program, make Bif Port E an output. Bit 2 of
Port E controls the RELAY LED. This will allow B# of Port E to turn on and
off the LED next to the relay. Write a 0 to PEZuon off the LED.

(d) Set up PTO as input capture, to capture the tfithe falling edge. In the
setup part of your program, clear the TCO flag andble the PTO interrupt. Write
an ISR (called something like TICO_ISR) to captinetime of the falling edge
on PTO, and save the value in a global variabiee_1). In the ISR, turn on the
RELAY LED, disable the PTO interrupt, and enalbie PT2 interrupt. Be sure to
clear both the TCO and TC2 flags in the ISR.

(e) Set up PT2 as input capture, to capture the tihthe falling edge. Clear the
TC2 flag and disable the PT2 interrupt. Write 8RI(called something like
TIC2_ISR) to capture the time of the falling edgeRY 2, and save the value in a
global variablet(i me_2), and set the global variabd®ne to 1. In the ISR, turn
off the RELAY LED, and disable the PT2 interrujfige sure to clear the TC2 flag
in the ISR.

(f) In the setup part of your program, set the glokariabledone to 0. Also,
enable the timer subsystem. Set the timer prassalthe overflow rate is greater
than 100 ms.

(g9) When your lab partner presses Key 1, the REILAD will turn on. Press
SW?2 as quickly as you can. In the infinite looptmd your program, wait until
SW2 is pressed by monitoring the global variatdae.

After your program captures the time of the PTRrfgledge, calculate the time
between the edge on PT2 (capturetliase_2 in the TIC2_ISR) and the edge on
PTO (captured asi ne_1 in the TICO_ISR). Convert this from clock cycles t
milliseconds, and then convert to BCD to displayttmseven-segment LEDs.
(How to do this is discussed below.)

To reset the system, press SW5, which makes PHi@goln your program,
when PHO goes low, clear the TCO and TC2 flags,rarehable the TCO
interrupt. Also, set the global variablesact i on_t i me anddone to O.

You can let the MC9S12 convert clock cycles to tiared display the time between two
edges on the seven-segment LEDs:

» Convert the number of timer cycles from PTO ettgeT2 edge to a floating-
point number. Divide it by (24,000,000/prescaler).

» Convert the time in milliseconds back to the fix@int number. Convert the
hexadecimal fixed-point number to a BCD numberhsotime in decimal
milliseconds will be displayed.

EE 308 New Mexico Tech Spring 2012

» Here is some code which will convert the timdeadiénce in timer clock cycles
to BCD milliseconds:

#defineCLOCK_FREQ (24.0e6)

#definePRESCALER (float) (1 << (TSCR2&0x07)))

unsigned int_first , t_second, dt ;

unsigned inteaction_time ; /I Value to display on seven—-segment LEDs

" dt=((float) (t_second —t_first) J*PRESCALER) / CLOCK_FRE00.0;
reaction_time = hex2bcd (dt) ;

unsigned inhex2bcd Unsigned ink)
{
unsigned ind3,d2,d1,dO;
if (x> 9999)returnOxFFFF,;
d3 = x /1000;
X = x—d3*1000;
d2 = x /100;
X = x—d2*100;
dl =x/10;
X = x—d1*10;
do = x;
returnd3*16*16*16 + d2*16*16 + d1*16 + dO;

5. Write an output compare ISR to generate a 16dtdare wave on PT4. Use a logic
probe to verify that it works.

