
EE 308 Spring 2010

Lecture 10

February 8, 2012

Using the Stack and the Stack Pointer

• The Stack and the Stack Pointer

• The stack is an area of memory used for temporary storage

• The stack pointer points to the last byte pushed onto the stack

• Some instructions which use the stack

• How data is pushed onto and pulled off of the stack.

• Subroutines and the Stack

• An example of a simple subroutine

• Using a subroutine with PORTA to make a binary counter on LEDs

1

EE 308 Spring 2010

GOOD PROGRAMMING STYLE

1. Make programs easy to read and understand.

• Use comments

• Do not use tricks

2. Make programs easy to modify

• Top-down design

• Structured programming – no spaghetti code

• Self contained subroutines

3. Keep programs short BUT do not sacrifice items 1 and 2 to do so

TIPS FOR WRITING PROGRAMS

1. Think about how data will be stored in memory.

• Draw a picture

2. Think about how to process data

• Draw a flowchart

3. Start with big picture. Break into smaller parts until reduced to individual instructions

• Top-down design

4. Use names instead of numbers

2

EE 308 Spring 2010

Another Example of an Assembly Language Program

• Find the average of the numbers in an array of data.

• The numbers are 8-bit unsigned numbers.

• The address of the first number is $E000 and the address of the final number is $E01F.
There are 32 numbers.

• Save the result in a variable called answer at address $2000.

Start by drawing a picture of the data structure in memory:

FIND AVERAGE OF NUMBERS IN ARRAY FROM 0xE000 TO 0xE01f

0xE000

0xE01F

 5

 1

 8

 6

11

 4

Treat numbers as 8−bit unsigned numbers

3

EE 308 Spring 2010

Start with the big picture

FIND AVERAGE OF 8−BIT NUMBERS IN ARRAY FROM 0xE000 TO 0xE01f

0xE000

0xE01F

START

Process

Entries

Init

Save

Answer

Done

5

1

8

6

11

4

4

EE 308 Spring 2010

Add details to blocks

0 −> Sum

Init

Done

Addr −>

Pointer

0xE000

SUM ODD 8−BIT NUMBERS IN ARRAY FROM 0xE000 TO 0xE01f

0xE01F

4

5

1

8

6

11

START

Process

Entries

Init

Done

Save

Answer

5

EE 308 Spring 2010

Decide on how to use CPU registers for processing data

FIND AVERAGE OF 8−BIT NUMBERS IN ARRAY FROM 0xE000 TO 0xE01f

Init

Done

0 −> Sum

Addr −>

Pointer

0xE000

0xE01F

4

5

1

8

6

11

Pointer: X or Y −− use X

Sum: 16−bit register

 D or Y

 No way to add 8−bit number to D

 Can use ABY to add 8−bit number to Y

START

Process

Entries

Init

Done

Save

Answer

6

EE 308 Spring 2010

Add more details: Expand another block

Yes

Done

Init

Done

0 −> Sum

Addr −>

Pointer

0xE000X −>

0xE01F

4

5

11

8

1

6

Process

Entries

Get

Num

loop:

START

Process

Entries

Init

Done

Save

Answer

FIND AVERAGE OF 8−BIT NUMBERS IN ARRAY FROM 0xE000 TO 0xE01f

Inc

Pointer

Add Num

to Sum

More

to do?

No

7

EE 308 Spring 2010

More details: How to tell when program reaches end of array

IDIV

Init

Done

0 −> Sum

Addr −>

Pointer

LDY #0

START

Process

Entries

Init

Init

Done

0 −> Sum

Addr −>

Pointer

Find

Average

FIND AVERAGE OF 8−BIT NUMBERS IN ARRAY FROM 0xE000 TO 0xE01f

How to check if more to do?

If X < 0xE020, more to do.

LDX #ARRAY

Process

Entries

Num
Get

loop:

Inc

Pointer

Add Num

to Sum

More

to do?

Yes

Done

Answer
Save

No

Done

Addresses are unsigned, so BLO

BLT or BLO?

X −> 4

 5

 1

 8

 6

11

0xE000

0xE01F

How to find average? Divide by LEN

To divide, use IDIV

LDX #LEN ; divisor in X
TFR Y,D ; dividend in D

8

EE 308 Spring 2010

Convert blocks to assembly code

TFR Y,D

X −> 4

 5

 1

 8

 6

11

0xE000 ARRAY

0xE01F ARRAY_END

Init

Done

0 −> Sum

Addr −>

Pointer

LDY #0

START

Process

Entries

Init

Init

Done

0 −> Sum

Addr −>

Pointer

Find

Average

FIND AVERAGE OF 8−BIT NUMBERS IN ARRAY FROM 0xE000 TO 0xE01f

LDX #ARRAY

Process

Entries

Num
Get

loop:

Inc

Pointer

Add Num

to Sum

More

to do?

Yes

Done

Answer
Save

No

LDAB 0,X

ABY

INX

CMPX #ARRAY_END

BLO loop

Done

STD ANSWER

IDIV
LDX #LEN

9

EE 308 Spring 2010

Write program

;Program to average 32 numbers in a memory array

prog: equ $2000

data: equ $1000

array: equ $E000

len: equ 32

org prog

ldx #array ; initialize pointer

ldy #0 ; initialize sum to 0

loop: ldab 0,x ; get number

aby ; odd - add to sum

inx ; point to next entry

cpx #(array+len) ; more to process?

blo loop ; if so, process

tfr y,d ; To divide, need dividend in D

ldx #len ; To divide, need divisor in X

idiv ; D/X quotient in X, remainder in D

stx answer ; done -- save answer

swi

org data

answer: ds.w 1 ; reserve 16-bit word for answer

• Important: Comment program so it is easy to understand.

10

EE 308 Spring 2010

The assembler output for the above program

Freescale HC12-Assembler

(c) Copyright Freescale 1987-2009

Abs. Rel. Loc Obj. code Source line

---- ---- ------ --------- -----------

1 1 ;Program to average 32 numbers in a memory array

2 2

3 3 0000 2000 prog: equ $2000

4 4 0000 1000 data: equ $1000

5 5

6 6 0000 E000 array: equ $E000

7 7 0000 0020 len: equ 32

8 8

9 9 org prog

10 10

11 11 a002000 CEE0 00 ldx #array ; initialize pointer

12 12 a002003 CD00 00 ldy #0 ; initialize sum to 0

13 13 a002006 E600 loop: ldab 0,x ; get number

14 14 a002008 19ED aby ; odd - add to sum

15 15 a00200A 08 inx ; point to next entry

16 16 a00200B 8EE0 20 cpx #(array+len) ; more to process?

17 17 a00200E 25F6 blo loop ; if so, process

18 18

19 19 a002010 B764 tfr y,d ; To divide, need dividend in D

20 20 a002012 CE00 20 ldx #len ; To divide, need divisor in X

21 21 a002015 1810 idiv ; D/X quotient in X, remainder in D

22 22 a002017 7E10 00 stx answer ; done -- save answer

23 23 a00201A 3F swi

24 24

25 25 org data

26 26 a001000 answer: ds.w 1 ; reserve 16-bit word for answer

27 27

28 28

And here is the .s19 file:

S11E2000CEE000CD0000E60019ED088EE02025F6B764CE002018107E10003FAB

S9030000FC

11

EE 308 Spring 2010

The Stack and tHe Stack Pointer

• Sometimes it is useful to have a region of memory for temporary storage, which does
not have to be allocated as named variables.

• When we use subroutines and interrupts it will be essential to have such a storage
region.

• Such a region is called a Stack.

• The Stack Pointer (SP) register is used to indicate the location of the last item put
onto the stack.

• When you put something onto the stack (push onto the stack), the SP is decremented
before the item is placed on the stack.

• When you take something off of the stack (pull from the stack), the SP is incremented
after the item is pulled from the stack.

• Before you can use a stack you have to initialize the Stack Pointer to point to one value
higher than the highest memory location in the stack.

• For the MC9S12 put the stack at the top of the data space

– For most programs, use $1000 through $2000 for data.

– For this region of memory, initialize the stack pointer to $2000.

– If you need more space for data and the stack, and less for your program, move the
program to a higher address, and use this for the initial value of the stack pointer.

.

• Use the LDS (Load Stack Pointer) instruction to initialize the stack point.

• The LDS instruction is usually the first instruction of a program which uses the stack.

• The stack pointer is initialized only one time in the program.

• For microcontrollers such as the MC9S12, it is up to the programmer to know how
much stack his/her program will need, and to make sure enough space is allocated for
the stack. If not enough space is allocated the stack can overwrite data and/or code,
which will cause the program to malfunction or crash.

12

EE 308 Spring 2010

The stack is an array of memory dedicated to temporary storage

SP

D

X

Y

PC

A B

CCR

SP decreases when you put item on stack

SP increases when you pull item from stack

 placed in block

 LDS #STACK

SP points to location last item

STACK: EQU $2000

0x1F03

0x1F02

0x1F01

0x1FFF

0x1F00

0x1EFE

0x1EFD

0x1EFC

0x1EFB

0x1EFA

0x1EF9

0x1EF8

0x1EF7

0x1EF6

0x1EF5

For MC9S12, use 0x2000 as initial SP:

13

EE 308 Spring 2010

An example of some code which uses the stack

Stack Pointer:

 Initialize ONCE before first use

 Decreases when you put something on stack

 Increases when you take something off stack

(LDS #STACK)

X

SP

A

 lds #STACK

 pshx

 psha

 clra

 CODE THAT USES A & X

 pulx

 pula

 ldaa #$2e

 ldx #$1254

 ldx #$ffff

 Points to last used storage location

0x1FFD

0x1FFC

0x1FFB

0x1FFA

0x1FF9

0x1FF8

0x1FF7

0x1FF6

0x1FF5

STACK: equ $2000

0x2000

0x1FFF

0x1FFE

CODE: org $2000

14

EE 308 Spring 2010

Core User Guide — S12CPU15UG V1.2

439

Operation (SP) – $0001 ⇒ SP
(A) ⇒ MSP

Decrements SP by one and loads the value in A into the address to which SP points.

Push instructions are commonly used to save the contents of one or more CPU registers at
the start of a subroutine. Complementary pull instructions can be used to restore the saved
CPU registers just before returning from the subroutine.

CCR
Effects

Code and
CPU
Cycles

PSHA Push A onto Stack PSHA

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

PSHA INH 36 Os

15

EE 308 Spring 2010

Subroutines

• A subroutine is a section of code which performs a specific task, usually a task which
needs to be executed by different parts of a program.

• Example:

– Math functions, such as square root

• Because a subroutine can be called from different places in a program, you cannot get
out of a subroutine with an instruction such as

bra label

because you would need to jump to different places depending upon which section of
code called the subroutine.

• When you want to call the subroutine your code has to save the address where the
subroutine should return to. It does this by saving the return address on the stack.

– This is done automatically for you when you get to the subroutine by using the BSR
(Branch to Subroutine) or JSR (Jump to Subroutine) instruction. This instruction
pushes the address of the instruction following the JSR (BSR) instruction on the
stack.

• After the subroutine is done executing its code it needs to return to the address saved
on the stack.

– This is done automatically for you when you return from the subroutine by using
the RTS (Return from Subroutine) instruction. This instruction pulls the return
address off of the stack and loads it into the program counter, so the program
resumes execution of the program with the instruction following that which called
the subroutine.

The subroutine will probably need to use some MC9S12 registers to do its work. How-
ever, the calling code may be using its registers for some reason — the calling code
may not work correctly if the subroutine changes the values of the MC9S12 registers.

– To avoid this problem, the subroutine should save the MC9S12 registers before it
uses them, and restore the MC9S12 registers after it is done with them.

16

EE 308 Spring 2010

Core User Guide — S12CPU15UG V1.2

333

Operation (SP) – $0002 ⇒ SP
RTNH:RTNL ⇒ MSP:MSP + 1
(PC) + $0002 + rel ⇒ PC

Sets up conditions to return to normal program flow, then transfers control to a subroutine.
Uses the address of the instruction after the BSR as a return address.

Decrements the SP by two, to allow the two bytes of the return address to be stacked.

Stacks the return address (the SP points to the high byte of the return address).

Branches to a location determined by the branch offset.

Subroutines are normally terminated with an RTS instruction, which restores the return
address from the stack.

CCR
Effects

Code and
CPU
Cycles

BSR Branch to Subroutine BSR

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

BSR rel8 REL 07 rr SPPP

17

EE 308 Spring 2010

Core User Guide — S12CPU15UG V1.2

463

Operation (MSP):(MSP + 1) ⇒ PCH:PCL
(SP) + $0002 ⇒ SP

Restores the value of PC from the stack and increments SP by two. Program execution
continues at the address restored from the stack.

CCR
Effects

Code and
CPU
Cycles

RTS Return from Subroutine RTS

S X H I N Z V C

– – – – – – – –

Source Form Address
Mode

Machine
Code (Hex) CPU Cycles

RTS INH 3D UfPPP

18

EE 308 Spring 2010

Example of a subroutine to delay for a certain amount of time

; Subroutine to wait for 100 ms

delay: ldaa #100 ; Execute outer loop 100 times

loop2: ldx #8000 ; Want inner loop to last 1 ms

loop1: dbne x,loop1 ; Inner loop -- 3 cycles x 8000 times

dbne a,loop2

rts

• Want inner loop to last for 1 ms. MC9S12 runs at 24,000,000 cycles/second, so 1 ms
is 24,000 cycles.

• Inner loop should be 24,000 cycles/ (3 cycles/loop) = 8,000 times

• Problem: The subroutine changes the values of registers A and X

• To solve, save the values of A and X on the stack before using them, and restore them
before returning.

; Subroutine to wait for 100 ms

delay: psha ; Save regs used by sub on stack

pshx

ldaa #100 ; Execute outer loop 100 times

loop2: ldx #8000 ; Want inner loop to last 1 ms

loop1: dbne x,loop1 ; Inner loop -- 3 cycles x 8000 times

dbne a,loop2

pulx ; Restore regs in opposite

pula ; order

rts

19

EE 308 Spring 2010

; Program to make a binary counter on LEDs

;

; The program uses a subroutine to insert a delay

; between counts

;

; Does not work on Dragon12-Plus. Need to write to PTJ

; to enable LEDs

prog: equ $2000

data: equ $1000

STACK: equ $2000

PORTB: equ $0001

DDRB: equ $0003

org prog

lds #STACK ; initialize stack pointer

ldaa #$ff ; put all ones into DDRA

staa DDRB ; to make PORTB output

clr PORTB ; put $00 into PORTB

loop: jsr delay ; wait a bit

inc PORTB ; add one to PORTB

bra loop ; repeat forever

; Subroutine to wait for 100 ms

delay: psha ; Save regs used by sub on stack

pshx

ldaa #100 ; Execute outer loop 100 times

loop2: ldx #8000 ; Want inner loop to last 1 ms

loop1: dbne x,loop1 ; Inner loop -- 3 cycles x 8000 times

dbne a,loop2

pulx ; Restore regs in opposite

pula ; order

rts

20

EE 308 Spring 2010

200A 3D

MY_SUB: LDX #$1234

 SWI

 JSR MY_SUB

 LDS #STACK

 RTS

2000 CF 20 00

2003 16 10 07

2006 7F

2007 CE 12 34

 ORG $2000

\

SP

D

X

Y

PC

A B

CCR

JSR and BSR place return address on stack

RTS returns to instruction after JSR or BSR

STACK: EQU $2000

0x1F03

0x1F02

0x1F01

0x1F00

0x1EFF

0x1EFE

0x1EFD

0x1EFC

0x1EFB

0x1EFA

0x1EF9

0x1EF8

0x01E6

0x1EF5

0x1EF7

21

EE 308 Spring 2010

Another example of using a subroutine

Using a subroutine to wait for an event to occur, then take an action.

• Wait until bit 7 of address $00C4 is set.

• Write the value in ACCA to address $00C7.

; This routine waits until the MC9S12 serial

; port is ready, then sends a byte of data

; to the MC9S12 serial port

putchar: brclr $00CC,#$80,putchar

staa $00CF

rts

• Program to send the word hello, world! to the MC9S12 serial port

; Program fragment to write the word "hello, world!" to the

; MC9S12 serial port

ldx $str

loop: ldaa 1,x+ ; get next char

beq done ; char == 0 => no more

jsr putchar

bra loop

swi

str: dc.b "hello, world!"

fc.b $0A,$0D,0 ; CR LF

22

EE 308 Spring 2010

Here is the complete program to write a line to the screen:

Freescale HC12-Assembler

(c) Copyright Freescale 1987-2009

Abs. Rel. Loc Obj. code Source line

---- ---- ------ --------- -----------

1 1 0000 2000 prog: equ $2000

2 2 0000 1000 data: equ $1000

3 3 0000 2000 stack: equ $2000

4 4 0000 00CC SCI0SR1: equ $00CC ; SCI0 status reg 1

5 5 0000 00CF SCI0DRL: equ $00CF ; SCI0 data reg low

6 6

7 7 org prog

8 8 a002000 CF20 00 lds #stack

9 9 a002003 CE10 00 ldx #str

10 10 a002006 A630 loop: ldaa 1,x+ ; get next char

11 11 a002008 2705 beq done ; char == 0 => no more

12 12 a00200A 1620 10 jsr putchar

13 13 a00200D 20F7 bra loop

14 14 a00200F 3F done: swi

15 15

16 16 a002010 4FCC 80FC putchar: brclr SCI0SR1,$80,putchar

17 17 a002014 5ACF staa SCI0DRL

18 18 a002016 3D rts

19 19

20 20 org data

21 21 a001000 6865 6C6C str: fcc "hello, world!"

001004 6F2C 2077

001008 6F72 6C64

00100C 21

22 22 a00100D 0A0D 00 dc.b $0a,$0d,0 ; CR LF terminating zero

23 23

23

EE 308 Spring 2010

Using DIP switches to get data into the MC9S12

• DIP switches make or break a connection (usually to ground)

DIP Switches on Breadboard

24

EE 308 Spring 2010

• To use DIP switches, connect one end of each switch to a resistor

• Connect the other end of the resistor to +5 V

• Connect the junction of the DIP switch and the resistor to an input port on the MC9S12

• The Dragon12-Plus has eight dip switches connected to Port H (PTH).

PH0

Using DIP Switches

PH1

+5V+5V+5V +5V

• When the switch is open, the input port sees a logic 1 (+5 V)

• When the switch is closed, the input sees a logic 0 (0 V)

25

EE 308 Spring 2010

Looking at the state of a few input pins

• Want to look for a particular pattern on 4 input pins

– For example want to do something if pattern on PB3-PB0 is 0110

• Don’t know or care what are on the other 4 pins (PB7-PB4)

• Here is the wrong way to do it:

ldaa PTH

cmpa #$06

beq task

• If PH7-PH4 are anything other than 0000, you will not execute the task.

• You need to mask out the Don’t Care bits before checking for the pattern on the bits
you are interested in

ldaa PTH

anda #$0F

cmpa #$06

beq task

• Now, whatever pattern appears on PB7-4 is ignored

26

EE 308 Spring 2010

Using an MC9S12 output port to control an LED

• Connect an output port from the MC9S12 to an LED.

Using an output port to control an LED

PA0

When a current flows
through an LED, it
emits light

Resistor, LED, and
ground connected
internally inside
breadboard

27

EE 308 Spring 2010

Making a pattern on a seven-segment LED

• Want to generate a particular pattern on a seven-segment LED:

d

c

g
b

a

f

e

• Determine a number (hex or binary) which will generate each element of the pattern

– For example, to display a 0, turn on segments a, b, c, d, e and f, or bits 0,

1, 2, 3, 4 and 5 of PTB. The binary pattern is 00111111, or $3f.

– To display 0 2 4 6 8, the hex numbers are $3f, $5b, $66, $7d, $7f.

• Put the numbers in a table

• Go through the table one by one to display the pattern

• When you get to the last element, repeat the loop

28

EE 308 Spring 2010

Flowchart to display a pattern of lights on a set of LEDs

X < end?

Inc
Pointer

Output to
PORTA

PORTA
Output

Point to
first entry

Get entry

table X START

ldaa #$ff
staa DDRA

ldx #table

ldaa 0,x

staa PORTA

inx

cpx #table_end

bls l2

bra l1

l1:

l2:

0x3f

0x5b

0x66

0x7d

table_end 0x7f

29

EE 308 Spring 2010

; Program using subroutine to make a time delay

prog: equ $2000

data: equ $1000

stack: equ $2000

PORTB: equ $0001

DDRB: equ $0003

org prog

lds #stack ; initialize stack pointer

ldaa #$ff ; Make PORTB output

staa DDRB ; 0xFF -> DDRB

l1: ldx #table ; Start pointer at table

l2: ldaa 1,x+ ; Get value; point to next

staa PORTB ; Update LEDs

jsr delay ; Wait a bit

cpx #table_end ; More to do?

bls l2 ; Yes, keep going through table

bra l1 ; At end; reset pointer

delay: psha

pshx

ldaa #100

loop2: ldx #8000

loop1: dbne x,loop1

dbne a,loop2

pulx

pula

rts

org data

table: dc.b $3f

dc.b $5b

dc.b $66

dc.b $7d

table_end: dc.b $7F

30

