
EE 308 Spring 2010

Lecture 16

February 27, 2012

Interrupts on the MC9S12

The Real Time Interrupt

Interrupt vectors for the MC9S12

• The interrupt vectors for the MC9S12DP256 are located in memory from 0xFF80 to
0xFFFF.

• These vectors are programmed into Flash EEPROM and are very difficult to change

• DBug12 redirects the interrupts to a region of RAM where they are easy to change

• For example, when the MC9S12 gets a TOF interrupt:

– It loads the PC with the contents of 0xFFDE and 0xFFDF.

– The program at that address tells the MC9S12 to look at address 0x3E5E and
0x3E5F.

– If there is a 0x0000 at these two addresses, DBug12 gives an error stating that the
interrupt vector is uninitialized.

– If there is anything else at these two addresses, DBug12 loads this data into the
PC and executes the routine located there.

– To use the TOF interrupt you need to put the address of your TOF ISR at ad-
dresses 0x3E5E and 0x3E5F.

• The location of the vectors is defined in include files so you don’t have to remember
them or look them up in the reference manual.

– For Assembly programs, the vectors are defined in the file hcs12.inc

UserTimerOvf equ $3E5E

– For C programs, the vectors are defined in the file vectors12.h

#define UserTimerOvf _VEC16(47) /* Maps to 0x3E5E */

1

EE 308 Spring 2010

Commonly Used Interrupt Vectors for the MC9S12DP256

Interrupt Specific General Normal DBug-12
Mask Mask Vector Vector

SPI2 SP2CR1 (SPIE, SPTIE) I FFBC, FFBD 3E3C, 3E3D
SPI1 SP1CR1 (SPIE, SPTIE) I FFBE, FFBF 3E3E, 3E3F
IIC IBCR (IBIR) I FFC0, FFC1 3E40, 3E41
BDLC DLCBCR (IE) I FFC2, FFC3 3E42, 3E43
CRG Self Clock Mode CRGINT (SCMIE) I FFC4, FFC5 3E44, 3E45
CRG Lock CRGINT (LOCKIE) I FFC6, FFC7 3E46, 3E47
Pulse Acc B Overflow PBCTL (PBOVI) I FFC8, FFC9 3E48, 3E49
Mod Down Ctr UnderFlow MCCTL (MCZI) I FFCA, FFCB 3E4A, 3E4B
Port H PTHIF (PTHIE) I FFCC, FFCD 3E4C, 3E4D
Port J PTJIF (PTJIE) I FFCE, FFCF 3E4E, 3E4F
ATD1 ATD1CTL2 (ASCIE) I FFD0, FFD1 3E50, 3E51
ATD0 ATD0CTL2 (ASCIE) I FFD2, FFD3 3E52, 3E53
SCI1 SC1CR2 I FFD4, FFD5 3E54, 3E55

(TIE, TCIE, RIE, ILIE)
SCI0 SC0CR2 I FFD6, FFD7 3E56, 3E57

(TIE, TCIE, RIE, ILIE)
SPI0 SP0CR1 (SPIE) I FFD8, FFD9 3E58, 3E59
Pulse Acc A Edge PACTL (PAI) I FFDA, FFDB 3E5A, 3E5B
Pulse Acc A Overflow PACTL (PAOVI) I FFDC, FFDD 3E5C, 3E5D
Enh Capt Timer Overflow TSCR2 (TOI) I FFDE, FFDF 3E5E, 3E5F
Enh Capt Timer Channel 7 TIE (C7I) I FFE0, FFE1 3E60, 3E61
Enh Capt Timer Channel 6 TIE (C6I) I FFE2, FFE3 3E62, 3E63
Enh Capt Timer Channel 5 TIE (C5I) I FFE4, FFE5 3E64, 3E65
Enh Capt Timer Channel 4 TIE (C4I) I FFE6, FFE7 3E66, 3E67
Enh Capt Timer Channel 3 TIE (C3I) I FFE8, FFE9 3E68, 3E69
Enh Capt Timer Channel 2 TIE (C2I) I FFEA, FFEB 3E6A, 3E6B
Enh Capt Timer Channel 1 TIE (C1I) I FFEC, FFED 3E6C, 3E6D
Enh Capt Timer Channel 0 TIE (C0I) I FFEE, FFEF 3E6E, 3E6F
Real Time CRGINT (RTIE) I FFF0, FFF1 3E70, 3E71
IRQ IRQCR (IRQEN) I FFF2, FFF3 3E72, 3E73
XIRQ (None) X FFFF, FFFF 3E74, 3E75
SWI (None) (None) FFF6, FFF7 3E76, 3E77
Unimplemented Instruction (None) (None) FFF8, FFF9 3E78, 3E79
COP Failure COPCTL (None) FFFA, FFFB 3E7A, 3E7B

(CR2-CR0 COP Rate Select)
COP Clock Moniotr Fail PLLCTL (CME, SCME) (None) FFFC, FFFD 3E7C, 3E7D
Reset (None) (None) FFFE, FFFF 3E7E, 3E7F

2

EE 308 Spring 2010

EXCEPTIONS ON THE MC9S12

• Exceptions are the way a processor responds to things other than the normal sequence
of instructions in memory.

• Exceptions consist of such things as Reset and Interrupts.

• Interrupts allow a processor to respond to an event without constantly polling to see
whether the event has occurred.

• On the MC9S12 some interrupts cannot be masked — these are the Unimplemented
Instruction Trap and the Software Interrupt (SWI instruction).

• XIRQ interrupt is masked with the X bit of the Condition Code Register. Once the X
bit is cleared to enable the XIRQ interrupt, it cannot be set to disable it.

– The XIRQ interrupt is for external events such as power fail which must be re-
sponed to.

• The rest of the MC9S12 interrupts are masked with the I bit of the CCR.

– All these other interrupts are also masked with a specific interrupt mask. For
example, the Timer Overflow Interrupt is masked with the TOI bit of the TSCR2
register.

– This allows you to enable any of these other interrupts you want.

– The I bit can be set I to 1 to disable all of these interrupts if needed.

3

E
E

308
S
p
rin

g
2010

The Real Time Interrupt

• Like the Timer Overflow Interrupt, the Real Time Interrupt allows you to interrupt the processor at a regular interval.

• Information on the Real Time Interrupt is in the CRG Block User Guide

• There are two clock sources for MC9S12 hardware.

– Some hardware uses the Oscillator Clock. The RTI system uses this clock.

∗ For our MC9S12, the oscillator clock is 8 MHz.

– Some hardware uses the Bus Clock. The Timer system (including the Timer Overflow Interrupt) use this clock.

∗ For our MC9S12, the bus clock is 24 MHz.

Interrupt
I Bit
CCR

.

. 1, 2, 4, 8, 16, 32, 64 .
.

.

.

D Q

VCC

Write
RTIF

Read
RTIF

RTIE Bit

RTR 6:4 (RTICTL)

1, 2, 3, 4, . . ., 16

RTR 3:0 (RTICTL)2OSC Clock 10

8 MHz

CRGINT
CRGFLG

4

EE 308 Spring 2010

• The specific interrupt mask for the Real Time Interrupt is the RTIE bit of the CRGINT
register.

• When the Real Time Interrupt occurs, the RTIF bit of the CRGFLG register is set.

– To clear the Real Time Interrupt write a 1 to the RTIF bit of the CRGFLG
register.

• The interrupt rate is set by the RTR 6:4 and RTR 2:0 bits of the RTICTL register.
The RTR 6:4 bits are the Prescale Rate Select bits for the RTI, and the RTR 2:0 bits
are the Modulus Counter Select bits to provide additional graunularity.

RTIF 0PORF LOCKIF LOCK TRACK SCMIF SCM

0

0x0037 CRGFLG

0x0038 CRGINTRTIE LOCKIE SCMIE0 0 0 0

RTR0RTR6 RTR5 RTR1 0x003B RTICTLRTR3 RTR20 RTR4

• To use the Real Time Interrupt, set the rate by writing to the RTR 6:4 and the RTR 3:0
bits of the RTICTL, and enable the interrupt by setting the RTIE bit of the CRGINT
register

– In the Real Time Interrupt ISR, you need to clear the RTIF flag by writing a 1 to
the RTIF bit of the CRGFLG register.

5

EE 308 Spring 2010

• The following table shows all possible values, in ms, selectable by the RTICTL register
(assuming the system uses a 8 MHz oscillator):

RTR 3:0 RTR 6:4

000 001 010 011 100 101 110 111

(0) (1) (2) (3) (4) (5) (6) (7)

0000 (0) Off 0.128 0.256 0.512 1.024 2.048 4.096 8.192

0001 (1) Off 0.256 0.512 1.204 2.048 4.096 8.192 16.384

0010 (2) Off 0.384 0.768 1.536 3.072 6.144 12.288 24.576

0011 (3) Off 0.512 1.024 2.048 4.096 8.192 16.384 32.768

0100 (4) Off 0.640 1.280 2.560 5.120 10.240 20.480 40.960

0101 (5) Off 0.768 1.536 3.072 6.144 12.288 24.570 49.152

0110 (6) Off 0.896 1.792 3.584 7.168 14.336 28.672 57.344

0111 (7) Off 1.024 2.048 4.096 8.192 16.384 32.768 65.536

1000 (8) Off 1.152 2.304 4.608 9.216 18.432 36.864 73.728

1001 (9) Off 1.280 2.560 5.120 10.240 20.480 40.960 81.920

1010 (A) Off 1.408 2.816 5.632 11.264 22.528 45.056 90.112

1011 (B) Off 1.536 3.072 6.144 12.288 24.576 49.152 98.304

1100 (C) Off 1.664 3.328 6.656 13.312 26.624 53.248 106.496

1101 (D) Off 1.729 3.584 7.168 14.336 28.672 57.344 114.688

1110 (E) Off 1.920 3.840 7.680 15.360 30.720 61.440 122.880

1111 (F) Off 2.048 4.096 8.192 16.384 32.768 65.536 131.072

6

EE 308 Spring 2010

• Here is a C program which uses the Real Time Interrupt:

#include <hidef.h> /* common defines and macros */

#include "derivative.h" /* derivative-specific definitions */

#include "vectors12.h" /* DBug12 RAM-based interrupt vectors */

#define enable() __asm(cli)

#define disable() __asm(sei)

interrupt void rti_isr(void);

void main(void)

{

disable();

DDRB = 0xff;

PORTB = 0;

RTICTL = 0x63; /* Set rate to 16.384 ms */

CRGINT = 0x80; /* Enable RTI interrupts */

CRGFLG = 0x80; /* Clear RTI Flag */

UserRTI = (unsigned short) &rti_isr;

enable();

while (1)

{

__asm(wai); /* Do nothing -- wait for interrupt */

}

}

interrupt void rti_isr(void)

{

PORTB = PORTB + 1;

CRGFLG = 0x80;

}

7

EE 308 Spring 2010

To display a 16 bit number on the four 7-segment LEDs, you need to display each 4-bit
nibble sequentially. E.g., to display the number 0x1234, you will first have to display the
“1” on the left-most 7-segment LED (turning on segments b and c) for a few milliseconds,
then display the “2” on the next 7-segment LED for a few ms, then the “3”, and finally the
“4”. An easy way to do this is to do it inside an RTI interrupt service routine. Use a static
variable to keep track of which nibble to display. The following RTI interrupt service routine
displays a global 16-bit variable called value on the seven-segment display

interrupt void rti_isr(void)

{

static unsigned char nibble=0;

/* Array to conver nibble to segments to turn on. For example, 0 is

displayed with segments a, b, c, d, e, and f, or 0011 1111

gfe dcba

*/

const char hex2seven_seg[] = {0x3F, 0x06, 0x5B, 0x4F, 0x66, 0x6D,

0x7D, 0x07, 0x7F, 0x6F, 0x77, 0x7c,

0x58, 0x5e, 0x79, 0x71};

switch (nibble) {

case 0: PTP = 0x0E; /* Enable the left-most display 1110 */

PTJ |= 0x02;

PORTB = hex2seven_seg[(value>>12)&0x0F];

break;

case 1: PTP = 0x0D; /* Enable the next display 1101 */

PTJ |= 0x02;

PORTB = hex2seven_seg[(value>>8)&0x0F];

break;

case 2: PTP = 0x0B; /* Enable the next display 1011 */

PTJ |= 0x02;

PORTB = hex2seven_seg[(value>>4)&0x0F];

break;

case 3: PTP = 0x07; /* Enable the right-most display 0111 */

PTJ |= 0x02;

PORTB = hex2seven_seg[(value)&0x0F];

break;

}

nibble = (nibble + 1) % 4;

CRGFLG = 0x80; /* Clear the RTI flag */

}

• digit is declared to be static so its value remains between entries into RTI_isr

• You cannot pass a value to an interrupt service routine, so any variable from another
part of the program used by the ISR must be declared as global

• You cannot pass a value out of an ISR, so if another part of the prgram needs a value
deterimed inside an ISR, you must use a global variable. It must also be declared as

8

EE 308 Spring 2010

volatile so the compiler knows that its value may change outside the regular program
flow.

9

