### Lecture 16

## February 27, 2012 Interrupts on the MC9S12 The Real Time Interrupt

### Interrupt vectors for the MC9S12

- $\bullet$  The interrupt vectors for the MC9S12DP256 are located in memory from 0xFF80 to 0xFFFF.
- These vectors are programmed into Flash EEPROM and are very difficult to change
- DBug12 redirects the interrupts to a region of RAM where they are easy to change
- For example, when the MC9S12 gets a TOF interrupt:
  - It loads the PC with the contents of 0xFFDE and 0xFFDF.
  - The program at that address tells the MC9S12 to look at address 0x3E5E and 0x3E5F.
  - If there is a 0x0000 at these two addresses, DBug12 gives an error stating that the interrupt vector is uninitialized.
  - If there is anything else at these two addresses, DBug12 loads this data into the PC and executes the routine located there.
  - To use the TOF interrupt you need to put the address of your TOF ISR at addresses 0x3E5E and 0x3E5F.
- The location of the vectors is defined in include files so you don't have to remember them or look them up in the reference manual.
  - For Assembly programs, the vectors are defined in the file hcs12.inc

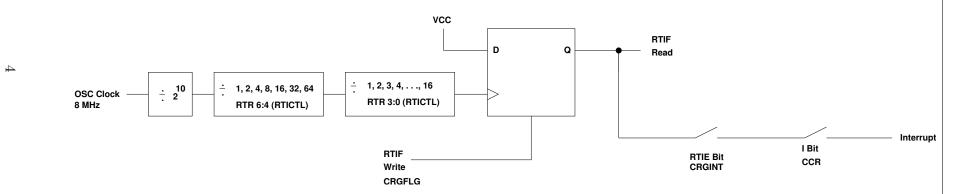
UserTimerOvf equ \$3E5E

- For C programs, the vectors are defined in the file vectors12.h

```
#define UserTimerOvf _VEC16(47) /* Maps to 0x3E5E */
```

| Interrupt                 | Specific                  | General | Normal     | DBug-12    |  |
|---------------------------|---------------------------|---------|------------|------------|--|
|                           | Mask                      | Mask    | Vector     | Vector     |  |
| SPI2                      | SP2CR1 (SPIE, SPTIE)      | I       | FFBC, FFBD | 3E3C, 3E3D |  |
| SPI1                      | SP1CR1 (SPIE, SPTIE)      | I       | FFBE, FFBF | 3E3E, 3E3F |  |
| IIC                       | IBCR (IBIR)               | I       | FFCO, FFC1 | 3E40, 3E41 |  |
| BDLC                      | DLCBCR (IE)               | I       | FFC2, FFC3 | 3E42, 3E43 |  |
| CRG Self Clock Mode       | CRGINT (SCMIE)            | I       | FFC4, FFC5 | 3E44, 3E45 |  |
| CRG Lock                  | CRGINT (LOCKIE)           | I       | FFC6, FFC7 | 3E46, 3E47 |  |
| Pulse Acc B Overflow      | PBCTL (PBOVI)             | I       | FFC8, FFC9 | 3E48, 3E49 |  |
| Mod Down Ctr UnderFlow    | MCCTL (MCZI)              | I       | FFCA, FFCB | 3E4A, 3E4B |  |
| Port H                    | PTHIF (PTHIE)             | I       | FFCC, FFCD | 3E4C, 3E4D |  |
| Port J                    | PTJIF (PTJIE)             | I       | FFCE, FFCF | 3E4E, 3E4F |  |
| ATD1                      | ATD1CTL2 (ASCIE)          | I       | FFDO, FFD1 | 3E50, 3E51 |  |
| ATDO                      | ATDOCTL2 (ASCIE)          | I       | FFD2, FFD3 | 3E52, 3E53 |  |
| SCI1                      | SC1CR2                    | I       | FFD4, FFD5 | 3E54, 3E55 |  |
|                           | (TIE, TCIE, RIE, ILIE)    |         |            |            |  |
| SCIO                      | SCOCR2                    | I       | FFD6, FFD7 | 3E56, 3E57 |  |
|                           | (TIE, TCIE, RIE, ILIE)    |         |            |            |  |
| SPIO                      | SPOCR1 (SPIE)             | I       | FFD8, FFD9 | 3E58, 3E59 |  |
| Pulse Acc A Edge          | PACTL (PAI)               | I       | FFDA, FFDB | 3E5A, 3E5B |  |
| Pulse Acc A Overflow      | PACTL (PAOVI)             | I       | FFDC, FFDD | 3E5C, 3E5D |  |
| Enh Capt Timer Overflow   | TSCR2 (TOI)               | I       | FFDE, FFDF | 3E5E, 3E5F |  |
| Enh Capt Timer Channel 7  | TIE (C7I)                 | I       | FFEO, FFE1 | 3E60, 3E61 |  |
| Enh Capt Timer Channel 6  | TIE (C6I)                 | I       | FFE2, FFE3 | 3E62, 3E63 |  |
| Enh Capt Timer Channel 5  | TIE (C5I)                 | I       | FFE4, FFE5 | 3E64, 3E65 |  |
| Enh Capt Timer Channel 4  | TIE (C4I)                 | I       | FFE6, FFE7 | 3E66, 3E67 |  |
| Enh Capt Timer Channel 3  | TIE (C3I)                 | I       | FFE8, FFE9 | 3E68, 3E69 |  |
| Enh Capt Timer Channel 2  | TIE (C2I)                 | I       | FFEA, FFEB | 3E6A, 3E6B |  |
| Enh Capt Timer Channel 1  | TIE (C1I)                 | I       | FFEC, FFED | 3E6C, 3E6D |  |
| Enh Capt Timer Channel 0  | TIE (COI)                 | I       | FFEE, FFEF | 3E6E, 3E6F |  |
| Real Time                 | CRGINT (RTIE)             | I       | FFFO, FFF1 | 3E70, 3E71 |  |
| IRQ                       | IRQCR (IRQEN)             | I       | FFF2, FFF3 | 3E72, 3E73 |  |
| XIRQ                      | (None)                    | Х       | FFFF, FFFF | 3E74, 3E75 |  |
| SWI                       | (None)                    | (None)  | FFF6, FFF7 | 3E76, 3E77 |  |
| Unimplemented Instruction | (None)                    | (None)  | FFF8, FFF9 | 3E78, 3E79 |  |
| COP Failure               | COPCTL                    | (None)  | FFFA, FFFB | 3E7A, 3E7B |  |
|                           | (CR2-CR0 COP Rate Select) |         |            |            |  |
| COP Clock Moniotr Fail    | PLLCTL (CME, SCME)        | (None)  | FFFC, FFFD | 3E7C, 3E7D |  |
| Reset                     | (None)                    | (None)  | FFFE, FFFF | 3E7E, 3E7F |  |

# Commonly Used Interrupt Vectors for the MC9S12DP256


#### EE 308

### EXCEPTIONS ON THE MC9S12

- Exceptions are the way a processor responds to things other than the normal sequence of instructions in memory.
- Exceptions consist of such things as Reset and Interrupts.
- Interrupts allow a processor to respond to an event without constantly polling to see whether the event has occurred.
- On the MC9S12 some interrupts cannot be masked these are the Unimplemented Instruction Trap and the Software Interrupt (SWI instruction).
- XIRQ interrupt is masked with the X bit of the Condition Code Register. Once the X bit is cleared to enable the XIRQ interrupt, it cannot be set to disable it.
  - The XIRQ interrupt is for external events such as power fail which must be respond to.
- The rest of the MC9S12 interrupts are masked with the I bit of the CCR.
  - All these other interrupts are also masked with a specific interrupt mask. For example, the Timer Overflow Interrupt is masked with the TOI bit of the TSCR2 register.
  - This allows you to enable any of these other interrupts you want.
  - The I bit can be set I to 1 to disable all of these interrupts if needed.

### The Real Time Interrupt

- Like the Timer Overflow Interrupt, the Real Time Interrupt allows you to interrupt the processor at a regular interval.
- Information on the Real Time Interrupt is in the CRG Block User Guide
- There are two clock sources for MC9S12 hardware.
  - Some hardware uses the Oscillator Clock. The RTI system uses this clock.
    \* For our MC9S12, the oscillator clock is 8 MHz.
  - Some hardware uses the Bus Clock. The Timer system (including the Timer Overflow Interrupt) use this clock.
     \* For our MC9S12, the bus clock is 24 MHz.



- The specific interrupt mask for the Real Time Interrupt is the RTIE bit of the CRGINT register.
- When the Real Time Interrupt occurs, the RTIF bit of the CRGFLG register is set.
  - To clear the Real Time Interrupt write a 1 to the RTIF bit of the CRGFLG register.
- The interrupt rate is set by the RTR 6:4 and RTR 2:0 bits of the RTICTL register. The RTR 6:4 bits are the Prescale Rate Select bits for the RTI, and the RTR 2:0 bits are the Modulus Counter Select bits to provide additional graunularity.

| RTIF | PORF | 0    | LOCKIF | LOCK | TRACK | SOMIF | SCM  | 0x0037 | CRGFLG |
|------|------|------|--------|------|-------|-------|------|--------|--------|
|      |      |      |        |      |       |       |      |        |        |
| RTIE | 0    | 0    | LOCKIE | 0    | 0     | SOMIE | 0    | 0x0038 | CRGINT |
|      |      |      |        |      |       |       |      |        |        |
| 0    | RIR6 | RIR5 | RIR4   | RIR3 | RIR2  | RIR1  | RIR0 | 0x003B | RTICIL |
|      | 1    | 1    |        |      |       |       |      | ]      |        |

- To use the Real Time Interrupt, set the rate by writing to the RTR 6:4 and the RTR 3:0 bits of the RTICTL, and enable the interrupt by setting the RTIE bit of the CRGINT register
  - In the Real Time Interrupt ISR, you need to clear the RTIF flag by writing a 1 to the RTIF bit of the CRGFLG register.

| RTR 3:0  | RTR 6:4 |       |       |       |        |        |        |         |  |
|----------|---------|-------|-------|-------|--------|--------|--------|---------|--|
|          | 000     | 001   | 010   | 011   | 100    | 101    | 110    | 111     |  |
|          | (0)     | (1)   | (2)   | (3)   | (4)    | (5)    | (6)    | (7)     |  |
| 0000 (0) | Off     | 0.128 | 0.256 | 0.512 | 1.024  | 2.048  | 4.096  | 8.192   |  |
| 0001 (1) | Off     | 0.256 | 0.512 | 1.204 | 2.048  | 4.096  | 8.192  | 16.384  |  |
| 0010 (2) | Off     | 0.384 | 0.768 | 1.536 | 3.072  | 6.144  | 12.288 | 24.576  |  |
| 0011 (3) | Off     | 0.512 | 1.024 | 2.048 | 4.096  | 8.192  | 16.384 | 32.768  |  |
| 0100 (4) | Off     | 0.640 | 1.280 | 2.560 | 5.120  | 10.240 | 20.480 | 40.960  |  |
| 0101 (5) | Off     | 0.768 | 1.536 | 3.072 | 6.144  | 12.288 | 24.570 | 49.152  |  |
| 0110 (6) | Off     | 0.896 | 1.792 | 3.584 | 7.168  | 14.336 | 28.672 | 57.344  |  |
| 0111 (7) | Off     | 1.024 | 2.048 | 4.096 | 8.192  | 16.384 | 32.768 | 65.536  |  |
| 1000 (8) | Off     | 1.152 | 2.304 | 4.608 | 9.216  | 18.432 | 36.864 | 73.728  |  |
| 1001 (9) | Off     | 1.280 | 2.560 | 5.120 | 10.240 | 20.480 | 40.960 | 81.920  |  |
| 1010 (A) | Off     | 1.408 | 2.816 | 5.632 | 11.264 | 22.528 | 45.056 | 90.112  |  |
| 1011 (B) | Off     | 1.536 | 3.072 | 6.144 | 12.288 | 24.576 | 49.152 | 98.304  |  |
| 1100 (C) | Off     | 1.664 | 3.328 | 6.656 | 13.312 | 26.624 | 53.248 | 106.496 |  |
| 1101 (D) | Off     | 1.729 | 3.584 | 7.168 | 14.336 | 28.672 | 57.344 | 114.688 |  |
| 1110 (E) | Off     | 1.920 | 3.840 | 7.680 | 15.360 | 30.720 | 61.440 | 122.880 |  |
| 1111 (F) | Off     | 2.048 | 4.096 | 8.192 | 16.384 | 32.768 | 65.536 | 131.072 |  |

• The following table shows all possible values, in **ms**, selectable by the RTICTL register (assuming the system uses a 8 MHz oscillator):

• Here is a C program which uses the Real Time Interrupt:

```
#include <hidef.h>
                           /* common defines and macros */
                           /* derivative-specific definitions */
#include "derivative.h"
#include "vectors12.h"
                           /* DBug12 RAM-based interrupt vectors */
#define enable() __asm(cli)
#define disable() __asm(sei)
interrupt void rti_isr(void);
void main(void)
{
    disable();
    DDRB = Oxff;
   PORTB = 0;
    RTICTL = 0x63; /* Set rate to 16.384 ms */
    CRGINT = 0x80; /* Enable RTI interrupts */
    CRGFLG = 0x80; /* Clear RTI Flag */
    UserRTI = (unsigned short) &rti_isr;
    enable();
   while (1)
    {
        __asm(wai); /* Do nothing -- wait for interrupt */
    }
}
interrupt void rti_isr(void)
{
    PORTB = PORTB + 1;
    CRGFLG = 0x80;
}
```

To display a 16 bit number on the four 7-segment LEDs, you need to display each 4-bit nibble sequentially. E.g., to display the number 0x1234, you will first have to display the "1" on the left-most 7-segment LED (turning on segments *b* and *c*) for a few milliseconds, then display the "2" on the next 7-segment LED for a few ms, then the "3", and finally the "4". An easy way to do this is to do it inside an RTI interrupt service routine. Use a static variable to keep track of which nibble to display. The following RTI interrupt service routine displays a global 16-bit variable called value on the seven-segment display

```
interrupt void rti_isr(void)
{
    static unsigned char nibble=0;
    /* Array to conver nibble to segments to turn on. For example, 0 is
       displayed with segments a, b, c, d, e, and f, or 0011 1111
                                                          gfe dcba
     */
    const char hex2seven_seg[] = {0x3F, 0x06, 0x5B, 0x4F, 0x66, 0x6D,
                                  0x7D, 0x07, 0x7F, 0x6F, 0x77, 0x7c,
                                  0x58, 0x5e, 0x79, 0x71;
    switch (nibble) {
        case 0: PTP = 0x0E;
                                 /* Enable the left-most display 1110 */
                PTJ \mid = 0x02;
                PORTB = hex2seven_seg[(value>>12)&0x0F];
                break;
        case 1: PTP = 0x0D;
                                 /* Enable the next display 1101 */
                PTJ = 0x02;
                PORTB = hex2seven_seg[(value>>8)&0x0F];
                break;
        case 2: PTP = 0xOB;
                                 /* Enable the next display 1011 */
                PTJ = 0x02;
                PORTB = hex2seven_seg[(value>>4)&0x0F];
                break;
        case 3: PTP = 0x07;
                                 /* Enable the right-most display 0111 */
                PTJ = 0x02;
                PORTB = hex2seven_seg[(value)&OxOF];
                break;
    }
   nibble = (nibble + 1) \% 4;
    CRGFLG = 0x80;
                                 /* Clear the RTI flag */
}
```

- digit is declared to be static so its value remains between entries into RTI\_isr
- You cannot pass a value to an interrupt service routine, so any variable from another part of the program used by the ISR must be declared as global
- You cannot pass a value out of an ISR, so if another part of the prgram needs a value deterimed inside an ISR, you must use a global variable. It must also be declared as

 $\verb|volatile|$  so the compiler knows that its value may change outside the regular program flow.