EE 308 Spring 2012

Lecture 36
April 25, 2012

Review for Exam 3

Linking Assembly Subroutine with a C Program

A /D Converter

e Power-up A/D converter (ATD1CTL2)
e Write 0x05 to ATD1CTLA4 to set at fastest conversion speed and 10-bit conversions
e Write 0x85 to ATD1CTL4 to set at fastest conversion speed and 8-bit conversions
e Select number of conversions in a sequence (ATD1CTL3)
e Select type of conversion sequence and the analog channels sampled (ATD1CTLS5)
— Right/left justified
— signed /unsigned

— Continuous Scan vs. Single Scan

— Multichannel vs. Single Channel conversions
e How to tell when conversion is complete - ATD1ISTATO register

e How to read results of A/D conversions - ATD1DR|[7 — 0]H (8-bit left-justified conver-
sions)

e How to read results of A/D conversions - ATD1DR][7 — 0]L (8-bit right-justified con-
versions)

e How to read results of A/D conversions - ATD1DR[15 — 6] (10-bit left-justified conver-
sions)

e How to read results of A/D conversions - ATD1DR[9 — 0] (10-bit right-justified conver-
sions)

— Be able to convert from digital number to voltage, and from voltage to digital
number (need to know Vgy and Vgp).

e How long does it take to make a conversion?

EE 308 Spring 2012

Serial Communications and the IIC Bus

Pins used — SDA and SCI

Difference of use in Master and Slave mode

[1C serial format for writing to slave

— Start condition, 7-bit slave address, R/W, wait for acknowledge
— Send eight data bits, wait for ACK, repeat, send stop condition

I1C serial format for reading from slave

— Start condition, 7-bit slave address, R/W, wait for acknowledge
— Receive eight data bits, send ACK, repeat, after receiving last byte, send NACK
instead of ACK, send stop condition

IIC IBAD (Bus Address) register

— Set address when used as slave
— To use as master, write something like 0x01 (any address not assigned to a slave)

IIC IBFD (Bus Frequency Divide) Register

— Set clock speed to match slave
IIC IBCR (Bus Control Register) Register

— IBEN — Enable IIC bus

— IBIE — Enable interrupts

— MS/SL Switch to master mode

— TX/RX Switch between transmit and receive

— TKAK — Send an acknowledge

— RSTA — Send an restart (didn’t discuss)

— IBSWAI — Specify if IIC clock should operate in WAIT mode (didn’t discuss)

e [IC IBSR (Bus Status Register) Register

— TCF — Transmit Complete Flag

— TAAS — Did not discuss

— IBB — Did not discuss

— IBAL — Did not discuss

— SRW — Did not discuss

— IBIF — Interrupt flag. Clear by writing a 1 to this bit.
— RXAK — Did not discuss

e [IC IBDR (Bus Data Register) Register

— Write data to this register to send to slave
— Read data from this register to receive from slave

EE 308 Spring 2012

Interfacing

e Getting into expanded mode — MODA, MODB, MDOC pins or MODE Register
e PEAR Register — enable ECLK, LSTRB, R/W on external pins

e Ports A and B in expanded mode

— Port A — AD 15-8 (Port A is for data for high byte, even addresses)
— Port B— AD 7-0 (Port B is for data for low byte, odd addresses)

e | clock

— Address on AD 15-0 when E low, Data on AD 15-0 when E high
— Need to latch address on rising edge of E clock

— On write (output), external device latches data on signal initiated by falling edge
of E

— On read (input), HCS12 latches data on falling edge of E
— E-clock stretch - MISC register

e R/W Line
e LSTRB line
e Single-byte and two-byte accesses

— 16-bit access of even address — A0 low, LSTRB low — accesses even and odd bytes
— 8-bit access of even address — A0 low, LSTRB high — accesses even byte only

— 8-bit access of odd address — A0 high, LSTRB low — accesses odd byte only

— A0 high and LSTRB high never occurs on external bus.

e Address Decoding — interfacing using MSI chips
e Timing — Be sure to meet setup and hold times of device receiving data

— For a write, meet setup and hold of external device
— For a read, meet setup and hold of HC12

e Timing — Be sure to meet address access time (length of time address needs to be on
bus before external device is ready)

EE 308 Spring 2012

Linking Assembly Subroutine with a C Program

e To link an assembly subroutine to a C program, you have to understand how parameters
are passed.

e For the CodeWarrior C compiler, one parameter is passed in the registers. The other
parameters are passed on the stack.

— The left-most parameter is pushed onto the stack first, then the next-to-left, etc.
— The right-most parameter is passed in the registers

* An 8-bit parameter is passed in the B regisiter
x A 16-bit parameter is passed in the D register
* A 32-bit parameter is passed in the {X:D} register combination.

e A value returned from the assembly language program is returned in the registers:

— An 8-bit parameter is returned in the B regisiter
— A 16-bit parameter is returned in the D register

— A 32-bit parameter is returned in the {X:D} register combination.

e In the assembly language program, declare things the C program has to know about
as XDEF:

XDEF foo

e In the C program, declare things in the assembly program as you would an other
functions:

int foo(int x);

e In the assembly language program, use the stack to store local variables

— Need to keep close track of stack frame

EE 308 Spring 2012

Consider an assembly-language function fuzzy which uses two 8-bit arguments argl
and arg?2, and returns an 8-bit argument result.

e Declare the function in the C program as
char fuzzy(char argl, char arg2);
e Here is how the function may be called in the C program:
char x,y,result;
result = fuzzy(x, y);
e When the program is compiled, the value of the variable x is pushed onto the stack,

the value of the variable y is loaded into the B register, and the function is called with
a JSR instruction:

15: result = fuzzy(x,y); /* call the assembly function */
000b £60000 [3] LDAB x
000e 37 [2] PSHB
000f £60000 (3] LDAB vy
0012 160000 (4] JSR fuzzy

e In the assembly language function, you may need to use some local variables, which
need to be allocated on the stack. If the fuzzy function needs two local 8-bit variables
varl and var2, you will need to allocate two bytes on the stack for them. Here’s what
the start of the assembly language program will look like:

fuzzy:
leas -2,sp ; Room on stack for varl and var2

; Stack frame after leas -2,sp

; SP -> varl

; SP + 1 -> var2

; SP + 2 -> Return address high

; SP + 3 -> Return address low

; SP + 4 -> 1st parameter of function (argl)

; 2nd paramter (arg2) passed in B register

e In the assembly language program, you access argl, varl and var2 with indexed
addressing mode:

stab 1,SP ; Save arg2 into var2
ldaa 4 ,SP ; Put argl into ACCA
staa 0,SP ; Save argl into varl

EE 308 Spring 2012

e When you return from the assembly language function, put the value you want to
return into B, add two to the stack (to deallocate varl and var2), and return with an
RTS. For example, it you want to return the value of the variable var2, you would do
the following:

1dab 1,SP ; Put var2 into B
leas 2,SP ; Deallocate local variables
rts ; Return to calling program

e Any global variables used by the program should be declared in a separate section:

; section for global variables

FUZZY_RAM: SECTION

; Locations for the fuzzy input membership values
I_E_PM: ds.b 1

I_E_PS: ds.b 1

e Any global constants used by the program should be declared in a separate section:

; section for global variables

FUZZY_RAM: SECTION

; Locations for the fuzzy input membership values
I_E_PM: ds.b 1

I_E_PS: ds.b 1

FUZZY_CONST: SECTION

; Fuzzy input membership function definitions for speed error
E_Pos_Medium: dc.b 170, 255, 6, 0

E_Pos_Small: dc.b 128, 208, 6, 6

e The assembly language code should be put in its own section:

; code section

MyCode: SECTION
; this assembly routine is called by the C/C++ application
fuzzy:
leas -2,sp ; Room on stack for ERROR and d_ERROR

EE 308 Spring 2012

C program which calls fuzzy logic assembly function

#include <hidef.h> /* common defines and macros */

#include "derivative.h" /* derivative-specific definitions */
#include <stdio.h>

#include <termio.h>

int fuzzy(unsigned char e, unsigned char de);
unsigned char ERROR[] = {128,128,128,100,150};
unsigned char d_ERROR[] = {128,100,150,128,128};

void main (void)

{
char dPWM;
int i;

/* Set up SCI for using printf() */

SCIOBDH = 0x00; /* 9600 Baud */

SCIOBDL = 0x9C;

SCIOCR1 = 0x00;

SCIOCR2 = 0x0C; /* Enable transmit, receive */

for (i=0;i<5;i++) {
dPWM = fuzzy(ERROR[i],d_ERROR[i]);
(void) printf("ERROR = %3d, d_ERROR = %3d, ", ERROR[i],d_ERROR[i]);
(void) printf("dPWM: %4d\r\n", dPWM);

}

asm(" swi");

EE 308

Spring 2012

The Assembly program

5 ook koo ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok k ok ok ok ok ok ok ok sk ok sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok k ok ok ok

;* This stationery serves as the framework for a

;¥ user application. For a more comprehensive program that
;* demonstrates the more advanced functionality of this

;¥ processor, please see the demonstration applications

;¥ located in the examples subdirectory of the

;* Freescale CodeWarrior for the HC12 Program directory

¥ ¥ X ¥ * *

5 Kook ok okook ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok sk ok ok ok sk ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok k ok

; export symbols
XDEF fuzzy
; we use export ’Entry’ as symbol. This allows us to
; reference ’Entry’ either in the linker .prm file
or from C/C++ later on

; Include derivative-specific definitions

INCLUDE

’derivative.inc’

; Offset values for input and output

E_PM
E_PS
E_ZE
E_NS
E_NM
dE_PM
dE_PS
dE_ZE
dE_NS
dE_NM
0_PM
0_PS
0_ZE
0_NS
0_NM
MARKER
END_MARKER

; variable/data section
FUZZY_RAM: SECTION

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

0

© 0 NO Ok WN -

N e
S W N - O

$FE
$FF

I
3
3

b

membership functions

Positive

; Positive

; Negative

Negative
Positive
Positive

medium error
small error

; Zero error

small error
medium error
medium differential error
small differential error

Zero differential error

Negative small differential error
Negative medium differential error
Positive medium output

Positive small

Zero output

Negative small

Negative medium output

Rule separator
End of Rule marker

; Locations for the fuzzy input membership values for speed error

I_E_PM:
I_E_PS:
I_E_ZE:
I_E_NS:
I_E_NM:

ds.b
ds
ds
ds

.b
.b
.b
ds.b

1

1
1
1
1

EE 308 Spring 2012

; Locations for the fuzzy input membership values for speed error diff
I_dE_PM: ds.b 1

I_dE_PS: ds.b 1
I_dE_ZE: ds.b 1
I_dE_NS: ds.b 1
I_dE_NM: ds.b 1

; Output fuzzy membership values - initialize to zero

M_PM: ds.b 1
M_PS: ds.b 1
M_ZE: ds.b 1
M_NS: ds.b 1
M_NM: ds.b 1

FUZZY_CONST: SECTION
; Fuzzy input membership function definitions for speed error

E_Pos_Medium: dc.b 170, 255, 6, 0
E_Pos_Small: dc.b 128, 208, 6, 6
E_Zero: dc.Db 88, 168, 6, 6
E_Neg_Small: dc.b 48, 128, 6, 6
E_Neg_Medium: dc.b 0, 80, 0, 6
; Fuzzy input membership function definitions for speed error
dE_Pos_Medium: dc.b 170, 255, 6, 0
dE_Pos_Small: dc.b 128, 208, 6, 6
dE_Zero: dc.b 88, 168, 6, 6
dE_Neg_Small: dc.b 48, 128, 6, 6
dE_Neg_Medium: dc.b 0, 80, 0, 6

; Fuzzy output memership function definition

PM_Output: dc.b 192

PS_Output: dc.b 160

ZE_QOutput: dc.b 128

NS_Output: dc.b 96

NM_Output: dc.b 64

; Rule Definitions

Rule_Start: dc.b E_PM,dE_PM,MARKER,O_NM,MARKER
dc.b E_PM,dE_PS,MARKER,O0_NM,MARKER
dc.b E_PM,dE_ZE,MARKER,O_NM,MARKER
dc.b E_PM,dE_NS,MARKER,O0_NS,MARKER
dc.b E_PM,dE_NM,MARKER,O_ZE,MARKER
dc.b E_PS,dE_PM,MARKER,O_NM,MARKER
dc.b E_PS,dE_PS,MARKER,O0_NM,MARKER
dc.b E_PS,dE_ZE,MARKER,O_NS,MARKER
dc.b E_PS,dE_NS,MARKER,O0_ZE,MARKER
dc.b E_PS,dE_NM,MARKER,O0_PS,MARKER

EE 308

dc.
dc.
dc.
dc.
dc.

o o o T T

dc.
dc.
dc.
dc.
dc.

o T T o T

dc.
dc.
dc.
dc.
dc.

o T o T T

; code section
MyCode: SECTION

E_ZE,dE_PM,MARKER,O0_NM,MARKER
E_ZE,dE_PS,MARKER,0_NS,MARKER
E_ZE,dE_ZE,MARKER,0_ZE,MARKER
E_ZE,dE_NS,MARKER,O0_PS,MARKER
E_ZE,dE_NM,MARKER,O0_PM, MARKER

E_NS,dE_PM,MARKER,O0_NS,MARKER
E_NS,dE_PS,MARKER,O0_ZE,MARKER
E_NS,dE_ZE,MARKER,0_PS,MARKER
E_NS,dE_NS,MARKER,O0_PM,MARKER
E_NS,dE_NM,MARKER,O0_PM, MARKER

E_NM,dE_PM,MARKER,0_ZE,MARKER
E_NM,dE_PS,MARKER,O0_PS,MARKER
E_NM,dE_ZE,MARKER,O0_PM,MARKER
E_NM,dE_NS,MARKER,O0_PM, MARKER

E_NM,dE_NM,MARKER,O0_PM, END_MARKER

; this assembly routine is called by the C/C++ application

; Stack frame after leas -2,sp

; SP
; SP
; SP
; SP
; SP

+ + + +
W N -

; 2nd paramter (ERROR) passed in B register

leas
stab
1ldab
stab

; Fuzzification
LDX
LDY
LDAA
LDAB

Loop_E: MEM
DBNE
LDAA
LDAB

Loop_dE: MEM

ERROR

d_ERROR

Return address high
Return address low

1st parameter of function (d_ERROR)

-2,sp ; Room on stack for ERROR and d_ERROR
1,sp ; d_ERROR passed in B register

4,sp ; ERROR passed on stack

0,sp ; Save in space reserved on stack

Spring 2012

#E_Pos_Medium ;
#I_E_PM ;
0,SP ;
#5 ;

B,Loop_E ;

1,SP ;
#5 ;

10

Start of Input Mem func
Start of Fuzzy Mem values
Get ERROR value

Number of iterations
Assign mem value

Do all five iterations
Get d_ERROR value

Number of iterations
Assign mem value

EE 308 Spring 2012

DBNE B,Loop_dE ; Do all five iterations

; Process rules
LDX #M_PM ; Clear output membership values
LDAB #5

Loopc: CLR 1,X+
DBNE B,Loopc
LDX #Rule_Start ; Address of rule list -> X
LDY #I_E_PM ; Address of input membership list -> Y
LDAA #$FF ; FF -> A, clear V bit of CCR
REV ; Rule evaluation

; Defuzzification
LDX #PM_Output ; Address of output functions -> X
LDY #M_PM ; Address of output membership values -> Y
LDAB #5 ; Number of iterations
WAV ; Defuzzify
EDIV ; Divide
TFR Y,D ; Quotient to D; B now from O to 255
SUBB #128 ; Subtract offset from d_PWM

; dPWM returned in B; already there

leas 2,sp ; Return stack frame to entry value
RTS

11

EE 308 Spring 2012

Output of Program

load

ok K ok 3 ok ok K ok K Kok K

>

>g 2029

hello, world

ERROR = 128, d_ERROR = 128, dPWM: 0
ERROR = 128, d_ERROR = 100, dPWM: 22
ERROR = 128, d_ERROR = 150, dPWM: -18
ERROR = 100, d_ERROR = 128, dPWM: 22
ERROR = 150, d_ERROR = 128, dPWM: -18

User Bkpt Encountered

PP PC SP X Y D = A:B CCR = SXHI NZVC
38 2BO9E 10FD 0005 0001 00:0C 1001 0100
xx:2B9E 1B83 LEAS 3,SP

12

