Name: __________________________

Closed book. One page of notes and a calculator are allowed. Show all work. Partial credit will be given. No credit will be given if an answer appears with no supporting work.

1. In the circuit below assume the diodes are ideal. Find the labeled voltages and currents for the following circuit:

![Circuit Diagram]

V_O is connected directly to ground, so $V_O = 0$ V.

Diode 1 is forward biased, so the voltage at the top of D1 is 0. There is 10 V across the 10 kΩ resistor, so $I_1 = 1$ mA.

Diode 2 is forward biased, so the voltage at the bottom of D2 is 0. There is 10 V across the 5 kΩ resistor, so $I_2 = 2$ mA.

At the node with V_O there is 1 mA coming into the node from I_1, and there is 2 mA leaving the node from I_2. Since the total current must be zero, there must be another 1 mA coming into the node — this is coming from the ground connection.

We have $V_{D_1} = 0$ V and $i_{D_1} = 1$ mA, so this is okay.

We have $v_{D_2} = 0$ V and $i_{D_2} = 2$ mA, so this is okay.

- To show that D1 is not reverse-biased, assume that it is. Then I_1 is 0, so there is no voltage drop across R_1. The voltage at the top of D_1 is +10 V.
 We have $I_{D_1} = 0$ V and $V_{D_1} = +10$ V. A diode cannot have positive voltage across it, so D_1 cannot be reverse biased.
- The same argument can be used to show D_2 is not reverse biased.
2. The figure below shows v_D measured for two different source voltages V_S.

\[\begin{array}{c|c|c}
V_S & V_D & I_D \\
\hline
2 \text{ V} & 0.526 \text{ V} & 1.474 \text{ mA} \\
10 \text{ V} & 0.595 \text{ V} & 9.405 \text{ mA} \\
\end{array} \]

(a) Find the diode parameters n and I_S.

(b) Find the diode voltage v_D when $V_S = 5 \text{ V}$.

\[i_D = \frac{V_S - V_D}{R} \quad i_{D1} = \frac{2 - 0.526}{1k} = 1.474 \text{ mA} \quad i_D = \frac{10 - 0.595}{1k} = 9.405 \text{ mA} \]

\[i_{D1} = I_S e^{\frac{V_D}{nV_T}} \quad i_{D2} = I_S e^{\frac{V_D}{nV_T}} \quad \text{Divide:} \quad \frac{i_{D2}}{i_{D1}} = e^{\frac{V_D - V_D}{nV_T}} \]

\[\frac{V_D - V_D}{nV_T} = \ln\left(\frac{i_{D2}}{i_{D1}}\right) \quad n = \frac{V_D - V_D}{V_T I_S\left(\frac{i_{D2}}{i_{D1}}\right)} = \frac{0.595 - 0.526}{25mV \times 1.474 mA} = 1.49 \]

\[I_S = i_{D1} e^{\frac{V_D}{nV_T}} = 1.474 \text{ mA} e^{\frac{-0.526}{(1.49)(25mV)}} = 1.09 \times 10^{-9} \text{ A} = 1.09 \text{ nA} \]

(b) V_D will be between 0.526 and 0.595. Start with $V_D = 0.55 \text{ V}$

\[i_D = \frac{V_S - V_D}{R} = \frac{5 - 0.55}{1k} = 4.45 \text{ mA} \]

\[V_D = nV_T \ln \frac{i_D}{I_S} = (1.49)(25mV) \ln \frac{4.45 \text{ mA}}{1.09 \text{ nA}} = 0.567 \text{ V} \]

\[i_D = \frac{V_S - V_D}{R} = 4.43 \text{ mA} \]

\[V_D = nV_T \ln \frac{i_D}{I_S} = (1.49)(25mV) \ln \frac{4.43 \text{ mA}}{1.09 \text{ nA}} = 0.567 \text{ V} \]

Same as before, so $V_D = 0.567 \text{ V}$
3. In the figure below assume \(n = 2 \) for the diode. When \(v_S = 0 \), it is found that \(v_D = 0.6 \text{ V} \).

(a) Find the current through the diode \(I_D \) when \(v_S = 0 \).

(b) Find the small-signal resistance of the diode \(r_D \).

(c) Find the output voltage when \(v_S = 1 \sin(\omega t) \).

\[V_{D0} = V_D - I_D r_D = 0.6 - (22 \text{ mA})(2.27 \Omega) = 0.55 \text{ V} \]

\[V_0 = V_D \left(1 - \frac{r_D}{R + r_D + R_L} \right) + \frac{(-V_{D0} - V_{DD}) R_L}{R + r_D + R_L} - V_{DD} \]

\[= 0.74 V_S \sin(\omega t) - 1.7 \text{ V} \]
4. The figure below shows a zener regulator circuit. The zener diode has a zener voltage of \(V_Z = 10 \) V when the current through it is 20 mA. It has a zener resistance \(r_Z = 20 \) \(\Omega \).

![Zener Regulator Circuit Diagram]

(a) Find the value of \(R \) such that the output voltage is 10 V when \(V_S = 20 \) V and the load current is zero (i.e., \(R_L = \infty \)).

(b) Find the output voltage when \(V_S = 21 \) V and the load current is zero.

(c) Find the output voltage when \(V_S = 20 \) V and \(R_L = 1 \) k\(\Omega \).

(d) What is the line regulation (percent change in output voltage for a change in \(V_S \))?

(e) What is the load regulation (percent change in output voltage for a change in \(I_L \))?

(a) \(V_Z = 10 \) V and \(V_S = 20 \) V. Then is

\[V_0 = V_S - V_Z = 10 \text{ V} \]

To have \(V_0 = 18 \) V, \(I_Z \) must be 20 mA. With \(I_L = 0 \),

\[I_R = I_Z - I_L = 20 \text{ mA} \]

\[I_R = \frac{V_S - V_0}{R} \quad R = \frac{V_S - V_0}{I_R} = 500 \Omega \]

(b) \(V_{Z_0} = V_S - I_Z r_Z = 9.6 \) V

\[V_0 = V_{Z_0} \left(\frac{R}{R + r_Z} \right) + V_S \left(\frac{r_Z}{R + r_Z} \right) = 10.0385 \text{ V} \]
Using superposition
\[V_0 = V_{20} \frac{R_{11} R_C}{R_{11} R_C + r_2} + V_S \frac{V_2 \parallel R_C}{V_2 \parallel R_C + R} = 9.81 \text{V} \]

(d) A 1V change in \(V_S \) gave a 0.0385 V change in \(V_0 \), so
\[\frac{\Delta V_0}{\Delta V_S} = 38.5 \text{ mV/V} = 3.85 \% \]
Also,
\[\frac{\Delta V_0}{\Delta V_S} = \frac{V_2}{R + r_2} = 0.0385 = 3.85 \% \]

(e) \(R_C = 1 \text{k} \Omega = V_0 = 9.81 \text{V} \) \(\Rightarrow \) \(I_L = 9.81 \text{mA} \)
\[\frac{\Delta V_0}{\Delta I_L} = \frac{9.81 \text{V} - 10 \text{V}}{9.81 \text{mA}} = -19.4 \text{ mV/mA} \]
Also,
\[\frac{\Delta V_0}{\Delta V_L} = -(V_2 \parallel R) = -19.23 \Omega = -19.23 \text{ mV/mA} \]
5. Consider the rectifier circuit in the figure below. Use the constant-voltage-drop diode model with \(V_D = 0.7 \text{ V} \).

(a) Sketch the output voltage waveform. Label the minimum and maximum voltages on the waveform.

(b) Find the voltage ripple \(V_r \).

(c) Find the peak diode current \(i_{D_{\text{max}}} \).

(a) See attached for plot. Note: The output voltage is negative
\[
V_S = \sqrt{2} \times V_{\text{rms}} = \sqrt{2} \times (12\text{ V}) = 16.97\text{ V}
\]
\[
V_p = V_S - 2V_D = 16.97\text{ V} - 2 \times 0.7 = 15.57\text{ V}
\]

(b) \(V_r = \frac{V_p}{2\pi f RC} = 1.41\text{ V} \)

(c) \(i_{D_{\text{max}}} = I_L \left(1 + 2\pi \sqrt{\frac{V_p}{2V_r}} \right) \)
\[
I_L = \frac{V_o}{R_L} \quad V_o = \frac{V_p - V_r}{2}
\]
\[
i_{D_{\text{max}}} = \left(\frac{V_p - V_r}{RC} \right) \left(1 + 2\pi \sqrt{\frac{V_p}{2V_r}} \right) = 23\text{ mA} \]
$V_S_{\text{max}} = 16.97\, \text{V}$

$V_P = 15.57\, \text{V}$