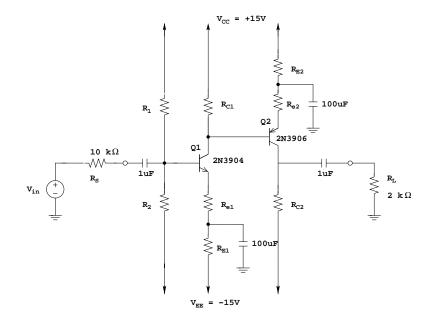
EE 321 HW 10 Fall 2002


EE321 - Fall 2002

Homework 10

Due November 4, 2002

- 1. Problem 4.66.
- 2. Problem 4.70.
- 3. Problem 4.73.
- 4. Problem 4.78.
- 5. Problem 4.85.
- 6. Consider the two-stage common-emitter amplifier shown below. The input is a microphone with a source resistance of $10 \text{ k}\Omega$. The amplitude of the input signal is 20 mV. The output should drive the $2 \text{ k}\Omega$ load resistor R_L with an amplitude of about 4 V. Choose appropriate values of resistors to finish the circuit. (Use standard values of 5% resistors from Appendix H of Sedra and Smith.) When done, find the gain of the circuit if β of both transistors if 100, and if β of both transistors is 200.

Hint: For the small-signal analysis, consider the two stages separately. The source resistance for the first stage is the the $10 \text{ k}\Omega$ of the microphone, and the load resistance for the first stage is the input resistance R_{i2} of the second stage. The source resistance for the second stage is the output resistance R_{o1} of the first stage, and the load resistance of the second stage is R_L . Make the gain of the first stage about 10, and the gain of the second stage about 20. Make sure V_{C2} is at least 3 V below V_{E2} to accommodate the swing in the output voltage. The analysis on Pages 285 through 288 shows how to find A_v , R_i and R_o for a common emitter amplifier with a resistance in the emitter.

