EE 341 - Homework 4

Due September 21, 2005

For problems which require MATLAB, please include a MATLAB m-file which shows how you made your plots.

1. Find the convolution $y[n]=x[n] * h[n]$ for each of the following signal pairs. Use an arrow to indicate $n=0$. Do the convolution by hand, and verify with the conv function of MATLAB.
(a) $x[n]=\{\stackrel{\Downarrow}{1}, 2,0,1\} \quad h[n]=\{\stackrel{\Downarrow}{2}, 2,3\}$
(b) $x[n]=\{3,2, \stackrel{\Downarrow}{1}, 1,2\} \quad h[n]=\{4, \stackrel{\Downarrow}{2}, 3,2\}$
(c) $x[n]=\{\stackrel{\Downarrow}{0}, 0,0,3,1,2\} \quad h[n]=\{4, \stackrel{\Downarrow}{2}, 3,2\}$
2. Let $x[n]=h[n]=\{\stackrel{\Downarrow}{3}, 4,2,1\}$.
(a) Find $x[n] * h[n]$
(b) Find $x[n] * h[-n]$
(c) Use the properties of convolution to find $x[n-1] * h[n+4]$
3. Consider a system which computes the average value of the current and past two inputs.
(a) Write a difference equation for the system.
(b) Use the difference equation to find the response of the system to the input

$$
x[n]=\{\stackrel{\Downarrow}{1}, 2,3,4,5\}
$$

(c) Find the impulse response of the system.
(d) Find $x[n] * h[n]$, and show the answer is the same as for part (b).
4. A linear time-invariant discrete-time system has an impulse response $h[n]=\left(\frac{1}{2}\right)^{n} u[n]$. Find the output to the system when the input is $x[n]=\left(\frac{1}{3}\right)^{n} u[n]$.
5. Problem 3.16 (d) (e).
6. The impulse response of an LTI CT system is $h(t)=2 e^{-t} u(t)-\delta(t)$.
(a) Find the output $y(t)$ of the system when the input is $x(t)=u(t)$.
(b) Find the output $y(t)$ of the system when the input is $x(t)=e^{-t} u(t)$.
7. Problem 3.26

FE 341 HF \# 4
1 . (a)

$$
\begin{aligned}
& x(n)=\left[\begin{array}{llll}
1 & 2 & 0 & 1
\end{array}\right] \quad h(m)=\left[\begin{array}{lll}
2 & 2 & 3
\end{array}\right] \\
& y(n)=h(n) * x c m \\
& y(0): 1201 \\
& \frac{3}{3} 282 \\
& y(1): \\
& 1201 \\
& \frac{3}{3} 2 \begin{array}{llll}
0 & 2 & 2 & 0
\end{array}=6 \\
& y(2): \\
& y(3): \\
& =8
\end{aligned}
$$

Continue on: $y(A)=[2,6,7,8,2,3]$
MAT LAS: $x=(1,2,0,1), \quad h=(2,2,3), y=\operatorname{con} 2(x, h)$ gives same results
(b)

$$
\left.\begin{array}{l}
x(n)=\left\{\begin{array}{lllll}
3 & 2 & 1 & 2
\end{array}\right\} \quad h(n)=\{4,2,3,2
\end{array}\right\}
$$

Smallest index is -3i when $h(-n)$ is shitted more than this, there is no over lapp

Continuing on: $y(n)=\{12,14,17,18,17,9,8,4\}$
(c)

$$
\text { Continuing on: } y(m)=\left\{\begin{array}{l}
0,0,12,1919,13,8,4\} \\
\uparrow
\end{array}\right.
$$

MATLAB gives same answer
2. (a)

$$
\begin{aligned}
& x(m)=h(n)=\{3,4,2,1) \\
& y_{a}^{(n)}=h(n) \neq x(a) \\
& y(0): \frac{3}{a}+\frac{1}{1} 4 \\
& 9
\end{aligned}=9
$$

Continuing on: $y_{a}(n)=\left\{\begin{array}{llll}9,24,28,22,12,4,1\end{array}\right\}$
(b)

$$
\begin{aligned}
& h(-n)=\left\{\begin{array}{llll}
1 & 2 & y & 3
\end{array}\right\} \\
& y_{b}(n)=x(n) \forall h(-n) \\
& y_{b}(0): \quad \begin{array}{llll}
3 & 4 & 211 \\
3 & 4 & 21 \\
9 & 16 & 41 & 1
\end{array}=30
\end{aligned}
$$

$$
\begin{aligned}
& x(n)=\left\{\begin{array}{l}
0,0,0,3,1,2 \\
\uparrow
\end{array}\right\} \quad h(n)=\{4,2,3,2\} \\
& y(n)=h(n) * x(m \\
& y(0)=\quad \begin{array}{lllll}
d & 0 & 0 & 0 & 2
\end{array} \\
& \frac{2324}{00}=0 \\
& y(2): \\
& \frac{\begin{array}{llllll}
0 & 0 & 0 & 3 & 12 \\
2 & 3 & 2 & 4 & & 12
\end{array}=12}{} \\
& \begin{array}{lllllll}
y(3): & \begin{array}{lllll}
0 & 0 & 3 & 1 & 2 \\
2 & 3 & 2 & 4
\end{array} \\
& 6 & 4 & =1 & 0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& y_{b}(-3): 34421 \\
& 3421 \\
& 3=0
\end{aligned}
$$

Continuing on: $y_{b}(n)=\{3,10,22,30,22,143\}$
(c)

$$
\begin{aligned}
y_{c}(n) & =x(n-1) \forall h(n+4)=y_{a}(n+3) \\
& =\{9,24,28,22,12,4,1\}
\end{aligned}
$$

3. (a)

$$
\begin{aligned}
& y(n)=\frac{1}{3}(x(n)+x(n-1)+x(n-2)) \\
& \left.y(0)=\frac{1}{3}(x(0)+x)-1\right)+x(-2)=\frac{1}{3}(1)=\frac{1}{3} \\
& y(1)=\frac{1}{3}(1+2)=1 \\
& y(2)=\frac{1}{3}(1+2+3)=2 \\
& y(3)=\frac{1}{3}(2+3+4)=3 \\
& \vdots \\
& y(n)=\left\{\frac{1}{3}, 1,2,3,4,3,5 / 3\right\}
\end{aligned}
$$

(b) $h\{n s$: outrout when $x(m)=\delta(n)$

$$
\begin{aligned}
& h(0)=\frac{1}{3}(\delta(0)+\delta(-n)+\delta(-2))=1 / 3 \\
& h(1)=\frac{1}{3}(\delta(1)+\delta(0)+\delta(-1))=1 / 3 \\
& h(2)=\frac{1}{3}(\delta(2)+\delta(1)+\delta(0))=1 / 3
\end{aligned}
$$

$h(n)=0$ for all other n

$$
h(n)=\left\{\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right\}
$$

(c) $y(n)=x(n) \neq h(n)$
$y(0):$

$$
\begin{array}{lllllll}
& 1 & 2 & 3 & 4 & 5 \\
\frac{1}{3} & 1 / 3 & 1 / 3 & & & \\
\hline & 1 / 3 & & & & 5 \\
1 & 2 & 3 & 4 & 5
\end{array}=1 / 3
$$

Continuing on: $y(n)=\{1 / 3,3$, $2,3,4,5 / 3\}$
Same as (a)
4. $h(n)=\left(\frac{1}{2}\right)^{n} u(n) \quad x(n)=\left(\frac{1}{3}\right)^{\wedge} u(m$

$$
y(m)=h(n) \nLeftarrow x(n)=\sum_{k=-\infty}^{\infty} h(k) x(n-k)=\sum_{k=-\infty}^{\infty}\left(\frac{1}{2}\right)^{k} u(k)\left(\frac{1}{3}\right)^{n-k} u(n-k)
$$

Fur $n<a \quad y(n)=0$
For $n \geq 0$, sum starts at $k=0$ (because of $u(k)$) and ends at $n-k=0 \Rightarrow n=k$ (because of $u(n-k)$)

$$
\begin{aligned}
y(n) & =\sum_{k=0}^{n}\left(\frac{1}{2}\right)^{k}\left(\frac{1}{3}\right)^{n-k}=\left(\frac{1}{3}\right)^{n} \sum_{k=0}^{n}\left(\frac{1}{2}\right)^{k}\left(\frac{1}{3}\right)^{-k}=\left(\frac{1}{3}\right)^{n} \sum_{k=0}^{n}\left(\frac{3}{2}\right)^{k} \\
& =\left(\frac{1}{3}\right)^{n} \frac{1-\left(\frac{3}{2}\right)^{n+1}}{1-3 / 2}=\frac{\left(\frac{1}{3}\right)^{n}-\left(\frac{1}{3}\right)^{n}\left(\frac{3}{2}\right)^{n}\left(\frac{3}{2}\right)}{-1 / 2} \\
& =\frac{\left(\frac{1}{3}\right)^{n}-\frac{3}{2}\left(\frac{1}{2}\right)^{n}}{-1 / 2}=3\left(\frac{1}{2}\right)^{n}-2\left(\frac{1}{3}\right)^{n}
\end{aligned}
$$

5. Problem 3,16
(d)

$\sim(-\lambda)$

No output until $t=1$.

For $\quad 1<t<3$

Overlap from $\lambda=0$ to $\lambda=t-1$
Areal $\frac{1}{2}($ base) (height)

$$
\begin{aligned}
& \frac{1}{2}(t-1)\left[\frac{1}{2}(t-1)\right] \\
& \frac{1}{4}(t-1)^{2}
\end{aligned}
$$

For $\quad 3<t<5$

overlap from $t-3$ to 2
Area of rectangle:

$$
\begin{aligned}
& {[2-(t-3)]\left(\frac{1}{2}(t-3)\right)} \\
& =\frac{1}{2}(5-t)(t-3)
\end{aligned}
$$

Area of triangle,

$$
\begin{aligned}
& \frac{1}{2}(\text { base })(\text { height } \\
& \frac{1}{2}[2-(t-3)]\left[1-\frac{1}{2}(t-3)\right] \\
& \frac{1}{4}(t-5)^{2}
\end{aligned}
$$

sum: $-\frac{1}{4} t^{2}+\frac{3}{2} t-\frac{5}{4}$

$$
y(t)= \begin{cases}0 & t \leq 0 \\ \frac{1}{4}(t-1)^{2} & 1 \leq t \leq 3 \\ -\frac{1}{4} t^{2}+\frac{3}{2} t-\frac{5}{4} & 3 \leq t \leq 5 \\ 0 & t \geq, 5\end{cases}
$$

See mATLAB for plot
(e) $x(t)$

For $t<0$ no overlap; $y(t)=0$
For $0 \leq t \leq 4$:

overlap from $\lambda=-1$ to $\lambda=t-1$

$$
\begin{aligned}
y(t) & =\int_{-1}^{t-1} x(\lambda) v(t-\lambda) d \lambda=\int_{-1}^{t-1} 2 \cdot 4 e^{-(t-\lambda)} d \lambda \\
& =8 e^{-t} \int_{1}^{t-1} e^{\lambda} d \lambda=\left.8 e^{-t}\left(e^{\lambda}\right)\right|_{-1} ^{t-1}=8 e^{-t}\left(e^{t-1}-e^{-1}\right) \\
& =8\left(e^{-1}-e^{-t-1}\right)
\end{aligned}
$$

For $t \geqslant 4$

$$
\begin{aligned}
& y(t)=\int_{-1}^{3} x(\lambda) v(t-\lambda) d \lambda=\int_{-1}^{3} 2 \cdot 4 e^{-(t-\lambda)} d \lambda \\
& \left.=8 e^{-t} \int_{-1}^{3} e^{\lambda} d \lambda=8 e^{-t} e^{\lambda}\right)_{-1}^{3}=8 e^{-t}\left(e^{3}-e^{-1}\right) \\
& y(t)= \begin{cases}0 & t \leq 0 \\
8\left(e^{-1}-e^{-t-1}\right) & 0 \leq t \leq 4 \\
8\left(e^{3-t}-e^{-1-t}\right) & t \geqslant 4\end{cases}
\end{aligned}
$$

See MATCAB for plits
6 (a)

$$
\begin{aligned}
& h(t)=2 e^{-t} u(t)-\delta(t) \\
& x(t)=u(t) \\
& y(h)=h(t) \forall x(t)=\int_{-\infty}^{\infty}\left[2 e^{-\lambda} u(\lambda)-\delta(\lambda)\right] u(t-\lambda) d \lambda \\
&=\underbrace{\int_{-\infty}^{\infty} 2 e^{-\lambda} u(\lambda) u(t-\lambda) d \lambda}_{y_{1}(t)}-\underbrace{\int_{-\infty}^{\infty} \delta(\lambda) u(t-\lambda)}_{y_{2}(t)} d \lambda \\
& y_{1}(t)=0 \text { if } t<0 \\
& y_{1}(t)=\int_{0}^{t} 2 e^{-\lambda} d \lambda=-\left.2 e^{-\lambda}\right|_{0} ^{t}=2\left(1-e^{-t}\right) \text { for } t \geqslant 0 \\
& y_{2}(t)=-u(t)
\end{aligned}
$$

$$
\begin{aligned}
\left.y(t)=y_{1}(t)+y_{2} \mid t\right) & =2\left(1-e^{-t}\right) u(t)-u(t) \\
& =\left(1-2 e^{-t}\right) u(t)
\end{aligned}
$$

(b) $x(t)=e^{-t} u / h$

$$
\begin{aligned}
y(t) & =\int_{-\infty}^{\infty} h(\lambda) x(t-\lambda) d \lambda \\
& =\int_{y_{1}(t)}^{\int_{-\infty}^{\infty}\left[2 e^{-\lambda} u(\lambda)-\delta(\lambda)\right] e^{-(t-\lambda)} u(t-\lambda) d \lambda} \\
& =\underbrace{\int_{-\infty}^{\infty} 2 e^{-\lambda} e^{-(t-\lambda)} u(\lambda) u(t-\lambda) d \lambda}_{y_{2}(t)}-\underbrace{\int_{-\infty}^{\infty} \delta(\lambda) e^{-(t-\lambda)} u(t-\lambda) d \lambda}_{-\infty}
\end{aligned}
$$

$y_{1}(t)=0$ for $t<0$

$$
\begin{aligned}
& y_{1}(t)=\int_{0}^{t} 2 e^{-\lambda} e^{-(t-\lambda)} d \lambda=2 e^{-t} \int_{0}^{t} d x=2 t e^{-t} t>0 \\
& y_{2}(h)=-e^{-t} u(t) \\
& y(t)=y_{1}(t)+y_{2}(t)=2 t e^{-t} u(t)-e^{-t} u(t) \\
& =(2 t-1) e^{-t} u(t)
\end{aligned}
$$

7. Problem $3.26 \quad y(t)=h(t) * x(t)$
(a) $y_{a}(t)=h(t) * \frac{d x(t)}{d t}=\frac{d}{d t}(h \mid h * x(t))=\frac{d y(t)}{d t}$
(b) $y_{b}(t)=h(t) * \frac{d^{2} x(t)}{d t^{2}}=\frac{d}{d t}\left(h(h) * \frac{d x(t)}{d t}\right)=\frac{d}{d t}\left(y_{a}(t)\right)=\frac{d^{2} y(t)}{d t^{2}}$
(h) $y_{c}\left(h=h\left(h * \int_{-\infty}^{t} x(\lambda) d \lambda=\int_{-\infty}^{t} h(\lambda) * x(\lambda)=\int_{-\infty}^{t} y(\lambda) d \lambda\right.\right.$
(d) $\left.\left.y_{d}(t)=h(t) *(x) t\right) * x(t)\right)=(h(t) * x(t)) * x(t)=y(t) * x(t)$
\% HW 4
\% Problem 1
\% (a)
$\mathrm{xa}=\left[\begin{array}{lll}1 & 2 & 0\end{array}\right] ;$
ha $=\left[\begin{array}{lll}2 & 3 & 3\end{array}\right] ;$
ya $=$ conv(xa,ha);
\% (b)
$x b=\left[\begin{array}{lllll}3 & 2 & 1 & 1 & 2\end{array}\right]$;
hb $=\left[\begin{array}{llll}4 & 2 & 3 & 2\end{array}\right] ;$
$\mathrm{yb}=\mathrm{conv}(\mathrm{xb}, \mathrm{hb})$;
\% (c)
$\mathrm{xc}=\left[\begin{array}{llllll}0 & 0 & 0 & 3 & 1 & 2\end{array}\right] ;$
$h c=\left[\begin{array}{llll}4 & 2 & 3 & 2\end{array}\right] ;$
yc $=$ conv (xc,hc);
\% Problem 3.16
figure(1)
clf
\% (d)
$t=0: 0.001: 6 ;$
$y d=\left((1 / 4) *(t-1) . \wedge^{\wedge} 2\right) . *((t>=1)-(t>=3))+\ldots$
$((-1 / 4) * t \cdot \wedge 2+(3 / 2) * t-(5 / 4)) . *((t>=3)-(t>=5)) ;$
subplot(211)
plot(t,yd)
ylabel('y_d(t)');
title('Problem 3.16 (d) (e)')
\% (e)
$t=-2: 0.001: 8 ;$
ye $=(8 *(\exp (-1)-\exp (-t-1))) . *((t>=0)-(t>=4))+\ldots$
(8* (exp (3-t) $-\exp (-1-t))) . *(t>=4) ;$
subplot(212)
plot(t,ye)
ylabel('y_e(t)');
xlabel('t (seconds)');
print -dpsc2 p3_16_de.ps

Problem 3.16 (d) (e)

