EE 341 - Homework 8

Due October 19, 2005

For problems which require MATLAB, please include a MATLAB m-file which shows how you made your plots.

1. Problem 5.31
2. Problem 5.34
3. Problem 5.36
4. Let $x(t)=8 \cos (2 \pi t)+6 \cos (22 \pi t)+6 \sin (32 \pi t)+\cos (58 \pi t)+\sin (66 \pi t)$
(a) What minimum sampling frequency F_{s} should be used to avoid aliasing?
(b) $x(t)$ is sampled at $F_{s}=80 \mathrm{~Hz}$. Sketch the sampled spectrum for $X_{s}(\omega)$.
(c) The sampled signal from Part (b) is passed through a low pass filter with a bandwidth of 40 Hz . Sketch the spectrum of the signal $Y_{s}(\omega)$ which comes out of the low pass filter.
(d) What frequencies are present in $y_{s}(t)$ from Part (c)?
5. Repeat Problem 3 for the sampling frequency $F_{s}=10 \mathrm{~Hz}$.
6. The signal $x(t)=\cos (400 \pi t)+\sin (800 \pi t)$ is sampled with a sampling frequency $F_{s}=500 \mathrm{~Hz}$.
(a) Use MATLAB to plot the signals $\cos (400 \pi t), \sin (800 \pi t)$ and $x(t)$. Use a time interval so you have several cycles of each signal, and a time spacing small enough so that the plots look smooth.
(b) Let $x[n]=\cos \left(400 \pi n T_{s}\right)+\sin \left(800 \pi n T_{s}\right)$, where $T_{s}=1 / F_{s}$. Use the MATLAB stem function to plot $\cos \left(400 \pi n T_{s}\right), \sin \left(800 \pi n T_{s}\right)$ and $x[n]$ (where n is an integer). Compare the sampled signals to the continuous-time signals from Part (a).

EE 341 HW\#8

1. Problem 5.31
(a) $T=\pi / 15$

$$
\omega_{s}=\frac{2 \pi}{T}=30 \mathrm{rad} / \mathrm{s}
$$

(b)
$T=\frac{2 \pi}{15} \quad \omega_{s}=\frac{2 \pi}{T}=15$

2. Problem 5.34

$$
\begin{aligned}
& x(t)=2+\cos (50 \pi t) \quad T=0.01 \mathrm{~s} \quad \omega_{s}=\frac{2 \pi}{T}=200 \mathrm{rad} / \mathrm{s} \quad \mathrm{~F}=\frac{1}{T}=100 \mathrm{k/t} \\
& \omega=0 \\
& \omega=50 \pi \\
& X(w) \\
& f=0 \\
& f=25 \\
& X(\omega)
\end{aligned}
$$

(a) Amplituder multipliat by $\frac{1}{T}=100$; repeats every 100 At

(b) Perfect reconstructur Keeps frequerues from -50 Hz to 50 Hz ,

$$
\begin{aligned}
& \text { and multiplics } \mathrm{bg}_{\mathrm{g}} \cdot T=0.01 \\
& Y(\omega)=2 \delta(\omega)+\frac{1}{2} \delta(\omega+50 \pi)+\frac{1}{2} \delta(\omega-50 \pi) \\
& y(t)=2+\cos (50 \pi t)
\end{aligned}
$$

(c) $x(n)=x(n \pi)=2+\cos (50 \pi n(0.01))=2+\cos \left(\frac{\pi n}{2}\right)$
3. Problem 5,36

$$
\begin{aligned}
& x(t)=1+\cos (20 \pi t)+\cos 160 \pi t), T=0.01 \quad F_{s}=\frac{1}{T}=100 \mathrm{~Hz} \\
& f=u \\
& f=10 \\
& \int_{-30}^{1 / 2} \int_{-10}^{1 / 2} \int_{0}^{1 / 2} \int_{10}^{1 / 2}
\end{aligned}
$$

(a) Amplitude multiplied sy $\frac{1}{T}=100$, repects every $100 \mathrm{Ht} 200 \mathrm{r} / \mathrm{s}$

(b) $B=30 \mathrm{Ht}$ (bandwidth) $F_{5}>2 B$, isu no atiasing

$$
y(t)=1+\cos (20 \pi t)+\cos 160 \pi t
$$

(c)

$$
\begin{aligned}
x(n)=x(n t) & =1+\cos (20 \pi n(0.01))+\cos (60 \pi n(0.0))) \\
& =1+\cos (0.2 \pi n)+\cos (0.6 \pi m
\end{aligned}
$$

4. $x(t)=8 \cos (2 \pi t)+6 \cos (22 \pi t)+6 \sin (32 \pi t)+\cos (58 \pi t)+\sin 166 \pi t)$
(a) Max freq is 33 Hz Tu avoid aliasing need $F_{s}>2 \mathrm{~B}=66 \mathrm{~Hz}$
(b) See MATLAB for slectch

The signal is sampled fast enough to avoid aliasing, so the sampled signal contains the frequencies of the orginal signal, scales $b y \frac{1}{T}=80$, plus repeats every 80 Hz .
(c) The filter cuts out all repeats, so the filtered signal is the same as the origind signal, except for amplitude scaling. The problem does not state the gain of the filter. I will assume a gain of $\frac{1}{80}$, so that the filtered signal is identical to the orignal signal.
Ser mATLAB for plots.
(d) $1 \mathrm{~Hz} 11 \mathrm{~Hz}_{1} 16 \mathrm{~Hz} 29 \mathrm{~Hz}$ and 33 Hz
5. $x(t)=1+\cos (20 \pi t)+\cos (60 \pi t), \quad F_{s}=10 \mathrm{tt}, \quad T=0.1 \sec$

$$
f=0 \quad f^{\downarrow}=10 \quad \begin{aligned}
& \\
& \\
&
\end{aligned}
$$

(a) Amplitude multiplied $b_{y} \frac{1}{T}=10$; repeats ever, 16 Hz $\cos (20 \mathrm{TH}$ has a δ the of amplltode 5 at 10 Hz and every multiple of $\pm 10 \mathrm{~Hz}, \ldots-30,-20,-10,0,10,20,30, \ldots$ It also has a δ foe of amplitude 5 at -10 Ht and every multirin of -10 Hz .
The same win be true for $\cos (60 \pi t)$
The signal I has a δ fan of amplitude 10 at 0 Ht and every multiple of $10 \mathrm{At7}$. .. $-30,-20,-10,0,10,20,36 \ldots$

When you add all these together you have δ fines of amplitude 30 at $-30,-20,-10,0,10,20,30 \ldots$

(b)

$$
\begin{aligned}
& Y(w) \\
& y(w)=3 \delta(w) \\
& y(t)=3
\end{aligned}
$$

(c)

$$
\begin{aligned}
x(n)=x(n T) & =1+\cos (20 \pi n(0.1))+\cos (60 \pi n(0.1)) \\
& =1+\cos (2 \pi n)+\cos (6 \pi n) \\
& =1+1+1 \\
& =3
\end{aligned}
$$

6(a) See MATLAB
(b) Ser mATLAB. The signal has frequencies 2001 tz and 4001 tz It is sampled at 500 Hz . The 400 Ht signal is aliased to -100 Hz So the sampled signal does not shew the 400 ht freq
\% EE 341 Homework \#8
\% Problem 4 (b)

```
% x(t) = 8 cos(2 pi t) + 6 cos(22 pi t) + 6 sin(32 pi t) + cos(58 pi t)
% + sin(66 pi t)
% 8 cos(2 pi t) has delta functions of height 4 at -1 Hz and 1 Hz
% 6 cos(22 pi t) has delta functions of height 3 at -11 Hz and 11 Hz
% 6 sin(32 pi t) has delta functions of height 3j at -16 Hz and -3j at 16 Hz
% cos(58 pi t) has delta functions of height 1/2 at -29 Hz and 29 Hz
% sin(66 pi t) has delta functions of height j/2 at -33 Hz and -j/2 at 33 Hz
```

figure(1)
clf
$\mathrm{f}=\left[\begin{array}{llllllllll}-33 & -29 & -16 & -11 & -1 & 1 & 11 & 29 & 33\end{array}\right]$;
Xmag $=\left[\begin{array}{llllllllll}1 / 2 & 1 / 2 & 3 & 3 & 4 & 4 & 3 & 3 & 1 / 2 & 1 / 2\end{array}\right] ;$
Xphase $=\left[\begin{array}{llllllllll}90 & 0 & 90 & 0 & 0 & 0 & 0 & -90 & 0 & -90\end{array}\right]$;
subplot (211)
stem(f,Xmag);
grid
ylabel('|X(f)|')
title('HW 8 Problem 4')
subplot (212)
stem(f,Xphase)
ylabel('\angle X(f)')
xlabel('X (Hz)')
grid
print -dpsc2 hw08_p4.ps
\% Problem 6
$\% \mathrm{x}(\mathrm{t})=\cos (400 \mathrm{pi} \mathrm{t})+\sin (800 \mathrm{pi} \mathrm{t}) ; \mathrm{Fs}=500 \mathrm{~Hz}$
figure(2)
clf
\% (a)
\% Choose $d t=0.0001$ to make plot smooth
$d t=0.0001$;
$\mathrm{t}=0: \mathrm{dt}: 0.02$;
subplot (211)
$\mathrm{x}=\cos (400 * \mathrm{pi} \mathrm{t})+\sin (800 * \mathrm{pi} * \mathrm{t})$;
plot(t, cos(400*pi*t));
hold on
plot(t, sin(800*pi*t), 'r');
plot(t,x,'g');
grid
legend('cos(400 \pi t)','sin(800 \pi t)','x(t)')
xlabel('t')
title('Homework 8, Problem 6')
\% (b)
$\mathrm{Fs}=500$;
TS = 1/Fs;
t = 0:Ts:0.02;
$\mathrm{n}=\mathrm{t} / \mathrm{Ts}$;
subplot(212)
$\mathrm{x}=\cos \left(400 * \mathrm{pi} \mathrm{n}_{\mathrm{n} * \mathrm{Ts})}+\sin \left(800 * \mathrm{pi} \mathrm{n}_{\mathrm{n} * \mathrm{Ts})}\right.\right.$;
stem(n, cos(400*pi*n*Ts));
hold on
stem(n,sin(800*pi*n*Ts),'r');
stem(n, x,'g');
grid
legend('cos(400 \pi t)','sin(800 \pi t)','x(t)')
hw08.m
xlabel('n')
print -dpsc2 hw08_p6.ps

