EE 341 - Homework 9

Due October 28, 2005

For problems which require MATLAB, please include a MATLAB m-file which shows how you made your plots.

1. Compute the DTFT of the following signals:
(a) $x[n]=\{1,2,2,1\}$
(b) $x[n]=(0.5)^{n+2} u[n]$
(c) $x[n]=n(0.5)^{2 n} u[n]$
(d) $x[n]=(n+1)(0.5)^{n} u[n]$
2. The DTFT of $x[n]$ is

$$
X(\Omega)=\frac{4}{2-e^{j \Omega}}
$$

Find the DTFT of the following signals without first finding $x[n]$.
(a) $x[n-2]$
(b) $x[n]-x[n-1]$
(c) $x[n] e^{j \pi n}$
(d) $n x[n]$
3. Problem 7.6 (c). (You can do this easily from the table of DTFT's. You do not need to do an integral.)

$$
\begin{gathered}
\text { EE 3Y) } \\
\text { HWH9 } \\
I(a) x(n)=\{1,2,2,1)=\delta(n)+2 \delta(n-1)+2 \delta(n-2)+\delta(n-3) \\
X(\Omega)=1+2 e^{-j \Omega}+2 e^{-j 2 \Omega}+e^{-j 3 \Omega} \\
\text { (b) } x(n)=(0.5)^{n+1} u(n)=0.5(0.5)^{n} u(n) \\
X(\Omega)=0.5 \frac{1}{1-0.5 e^{-j-2}}
\end{gathered}
$$

(c)

$$
\begin{aligned}
& x(n)=n(0.5)^{2 n} u(n)=n\left((0.5)^{2}\right)^{n} u(n)=n(0.25)^{n} u(n \\
&(0.25)^{1} u(n) \leftrightarrow \frac{1}{1-0.25 e^{-j n}} \\
& n(0.25)^{n} u(n) \leftrightarrow j \frac{d}{d n} \frac{1}{1-0.25 e^{-j n}} \\
&=j \frac{-1}{\left(1-0.25 e^{-j n}\right)^{2}} \frac{d}{d \Omega}\left(1-0.25 e^{-j n}\right) \\
&=j \frac{-1}{\left(1-0.25 e^{-j \mu}\right)\left(j 0.25 e^{-j n}\right)} \\
&=\frac{-0.25 e^{-j n}}{\left(1-0.25 e^{-j \Omega}\right)^{2}}
\end{aligned}
$$

(d)

$$
\begin{aligned}
(n+1)(0.5)^{n} u(n) & =n(0.5)^{n} u(n)+(0.5)^{1} u(n) \\
& \longleftrightarrow \frac{0.5 e^{-j n}}{\left(1-0.5 e^{-j n)^{2}}\right.}+\frac{1}{1-0.5 e^{-j n}} \\
& =\frac{1}{\left(1-0.5 e^{-j \Omega)^{2}}\right.}
\end{aligned}
$$

$2 \quad X(\Omega)=\frac{4}{2-e^{j \Omega}}$
(a) $x(n-2) \longleftrightarrow X(\Omega) e^{-j 2 \Lambda}=\frac{4 e^{-j 2 \Omega}}{2-e^{j \Omega}}$
(b)

$$
\begin{aligned}
x(n \Lambda-x(n-1) & \leftrightarrow x \Omega)-x(\Omega) \cdot e^{-j \Omega} \\
& =\frac{1-e^{-j \Omega}}{2-e^{j \Omega}}
\end{aligned}
$$

(c) $x\left(\pi e^{j \pi n} \leftrightarrow X(\Omega-\pi)=\frac{4}{2-e^{j(\Omega-\pi)}}\right.$

$$
=\frac{4}{2-e^{j n} e^{-j \pi}}=\frac{4}{2+e^{j n}}
$$

(d) $n X(n) \in \int \frac{d}{d n} X(\Omega)$

$$
\begin{aligned}
& =j \frac{d}{d \Lambda}\left(\frac{4}{2-e^{j n}}\right)=j \frac{-4}{\left(2-e^{j n}\right)} \frac{d}{d \Omega}\left(2-e^{j \Omega}\right) \\
& =\frac{-4 e^{j \Omega}}{2-e^{j n}}
\end{aligned}
$$

3. Problem 7.6 cer

$$
\begin{aligned}
x(n) & =\frac{\frac{2 \pi}{3}}{\pi} \sin c\left(\frac{2 \pi / 3}{\pi} n\right)+\frac{\pi / 3}{\pi} \sin \left(\frac{\pi / 3}{\pi} n\right) \\
& =\frac{2}{3} \sin c\left(\frac{2}{3} n\right)+\frac{1}{3} \sin c\left(\frac{1}{3} n\right)
\end{aligned}
$$

