
Getting Started with RTLinux

FSM Labs, Inc.

April 20, 2001

2

Contents

1 Introduction 5
1.1 Sources of Help . 5
1.2 Before You Begin: A Warning 7
1.3 RTLinux Overview . 8

2 The Basic API 11
2.1 Understanding an RTLinux Program 11
2.2 The Basic API . 12

2.2.1 Creating RTLinux POSIX Threads 12
2.2.2 Time Facilities . 14
2.2.3 Conversion Routines 14
2.2.4 Scheduling Threads . 15

2.3 A Simpl “Hello World” RTLinux program 17
2.3.1 Code Listing . 17
2.3.2 Dissecting “Hello World” 18
2.3.3 Compiling and Executing “Hello World” 19

3 The Advanced API 21
3.1 Using Floating Point Operations in RTLinux POSIX Threads 21
3.2 RTLinux IPC . 22

3.2.1 Using Real-Time FIFOs 22
3.2.2 Using Shared Memory 23
3.2.3 Waking and Suspending RTLinux Threads 24
3.2.4 Mutual Exclusion . 24

3.3 Accessing Memory . 25
3.4 Interrupts . 27

3.4.1 Hard Interrupts . 27
3.4.2 Soft interrupts . 28

3

4 CONTENTS

4 Special Topics 29
4.1 Symmetric Multi-Processing Considerations 29
4.2 RTLinux Serial Driver (rt com) 30
4.3 Interfacing RTLinux Components to Linux 31
4.4 Writing RTLinux Schedulers 32

A Running RTLinux Programs 33
A.1 General . 33
A.2 Examples . 34

A.2.1 Using rtlinux . 34
A.2.2 Using modprobe . 34
A.2.3 Using insmod and rmmod 34

B RTLinux API Reference 35
B.1 Getting Around . 36
B.2 Scripts and Utilities . 36
B.3 Core RTLinux API . 36
B.4 Version 1.x API: Not for New Projects 42

Chapter 1

Introduction

Welcome to the RTLinux Getting Started Guide! RTLinux is a hard realtime
operating system that coexists with the Linux OS. With RTLinux, it is pos-
sible to create realtime POSIX.1b threads that will run at precisely specified
moments of time. We have designed the Getting Started Guide with the
assumption that the reader has had some programming experience, but has
never used RTLinux.

The document is organized as follows. First, we present basic information
needed to get started: sources of help, common programming errors, and an
overview of the RTLinux design (Chapter 1). Next, we present the basic
RTLinux API and will step you through your first “Hello World” program
(Chapter 2). Third, we offer some of the more advanced API (Chapter 3),
after which you’ll find some special considerations and concepts (Chapter 4).
Finally, in the appendices, you find some different ways of running RTLinux
programs (Appendix A) and, most importantly, a complete listing of the
RTLinux API, utilities, and important paths (Appendix B).

1.1 Sources of Help

The RTLinux white paper in doc/design.pdf explains the basic architecture
in more detail and a summary of the design is presented in Section 1.3.
As you progress in your use of RTLinux, you’ll find yourself wanting more
information. Fortunately, there are many sources of help. For the most
up-to-date information, see the http://www.fsmlabs.com , http://www.-
rtlinux.com and http://www.rtlinux.org websites.

5

6 CHAPTER 1. INTRODUCTION

If you are primarily interested in hard realtime control and
not particularly interested in learning how to use RTLinux
itself, take a look at FSM Labs RTiC-Lab at www.rtic-
lab.org . RTiC-Lab is a front end to RTLinux that greatly
simplifies hard realtime control implementation, monitoring
and tuning.

If you are interested in running RTLinux on an industry stan-
dard PC-104 board or other type of minimal or embedded sys-
tem, see FSMLabs MiniRTL project , found at www.rtlinux.-
org/minirtl.html MiniRTL fits on a signle floppy disk and
provides full RTLinux capabilities.

Some other documents you may find useful are (Note: All references to
directories and files assume that RTLinux has been installed in its default
location /usr/rtlinux).:

• The RTLinux Manual Project, available at -www.rtlinux.org/docu-
ments/documentation/RTLManual/RTLManual.html

• The Single UNIX specification, available at www.opengroup.org/onlinepubs/-
7908799/index.html . (The Single UNIX spec is also installed in HTML
format with the RTLinux distribution. (susv2/index.html)

• The LinuxThreads library documentation at http://pauillac.inria.fr/-
˜xleroy/linuxthreads (included with glibc2). You can try running:

man 3 pthread_create

to see if it is installed on your system.

• “Getting Started With POSIX Threads” (by Thomas Wagner and
Don Towsley), available at centaurus.cs.umass.edu/˜wagner/threads-
html/tutorial.html .

• “Pthreads Programming”, available at www.oreilly.com/catalog/pthread
by Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell.

1.2. BEFORE YOU BEGIN: A WARNING 7

• Other documents or books describing POSIX threads.

The RTLinux distribution itself contains documentation to help you along
in your RTLinux projects:

• The man directory contains UNIX manual pages describing features
and commands specific to RTLinux. You can modify the MANPATH
environment variable so that these manual pages can be found with the
man command. (Type man man for instructions on how to change the
MANPATH variable globally.)

• The html/MAN directory contains the same manual pages, converted
to HTML.

• The RTLinux Frequently Asked Questions (FAQ) file can be found
under the top level directory of the RTLinux source tree.

• The examples directory contains programs which will give you first-
hand experience with the RTLinux API.

If, after attempting all of the above, you still have questions, there is
another rich source of information via the RTLinux mailing lists. You can
subscribe/unsubscribe to these lists at www.rtlinux.org/mailing lists.html .
Of course, you may not be the first person with your question. To ease your
search for answers, the lists are both browseable and searchable.

1.2 Before You Begin: A Warning

Realtime programs in RTLinux are executed in kernel space and have little
or no protection against bugs in the user’s code. Special care must be taken
when programming realtime tasks because programming errors may bring
the system down.

RTLinux supplies a debugger within its source tree under the directory
debugger. Use of the debugger is strongly recommended to reduce the risk of
system crashes.

Note also that by default RTLinux tasks do not have access to the com-
puter’s Floating Point Unit (FPU). You must explicitly set permissions for
each of your RTLinux tasks that require the use of the FPU.

8 CHAPTER 1. INTRODUCTION

1.3 RTLinux Overview

This section is intended to give users a top-level understanding of RTLinux.
It is not designed as an in-depth technical discussion of the system’s ar-
chitecture. Readers interested in the topic can start with Michael Bara-
banov’s Master’s Thesis. (A postscript version is available for download at
www.rtlinux.org/documents/papers/thesis.ps).

The basic premise underlying the design of RTLinux is that it is not fea-
sible to identify and eliminate all aspects of kernel operation that lead to un-
predictability. These sources of unpredictability include the Linux scheduling
algorithm (which is optimized to maximize throughput), device drivers, un-
interrruptible system calls, the use of interrupt disabling and virtual memory
operations. The best way to avoid these problems is to construct a small,
predictable kernel separate from the Linux kernel, and to make it simple
enough that operations can be measured and shown to have predictable exe-
cution. This has been the course taken by the developers of RTLinux. This
approach has the added benefit of maintainability - prior to the development
of RTLinux, every time new device drivers or other enhancements to Linux
were needed, a study would have to be performed to determine that the
change would not introduce unpredictability.

Figure 1.1 shows the basic Linux kernel without hard realtime support.
You will see that the Linux kernel separates the hardware from user-level
tasks. The kernel has the ability to suspend any user-level task, once that
task has outrun the “slice of time” allotted to it by the CPU. Assume, for
example, that a user task controls a robotic arm. The standard Linux kernel
could potentially preempt the task and give the CPU to one which is less
critical (e.g. one that boots up Netscape). Consequently, the arm will not
meet strict timing requirements. Thus, in trying to be “fair” to all tasks, the
kernel can prevent critical events from occurring.

Figure 1.2 shows a Linux kernel modified to support hard realtime. An
additional layer of abstraction - termed a “virtual machine” in the litera-
ture - has been added between the standard Linux kernel and the computer
hardware. As far as the standard Linux kernel is concedrned, this new layer
appears to be actual hardware. More importantly, this new layer introduces
its own fixed-priority scheduler. This scheduler assigns the lowest priority to
the standard Linux kernel, which then runs as an independent task. Then it
allows the user to both introduce and set priorities for any number of realtime
tasks.

1.3. RTLINUX OVERVIEW 9

Figure 1.1: Detail of the bare Linux kernel

Figure 1.2: Detail of the RTLinux kernel

10 CHAPTER 1. INTRODUCTION

The abstraction layer introduced by RTLinux works by intercepting all
hardware interrupts. Hardware interrupts not related to realtime activities
are held and then passed to the Linux kernel as software interrupts when the
RTLinux kernel is idle and the standard Linux kernel runs. Otherwise, the
appropriate realtime interrupt service routine (ISR) is run. The RTLinux
executive is itself nonpreemptible. Unpredictable delays within the RTLinux
executive are eliminated by its small size and limited operations. Realtime
tasks have two special attributes: they are “privileged” (that is, they have
direct access to hardware), and they do not use virtual memory. Realtime
tasks are written as special Linux modules that can be dynamically loaded
into memory. They are are not expected to execute Linux system calls. The
initialization code for a realtime tasks initializes the realtime task structure
and informs RTLinux of its deadline, period, and release-time constraints.
Non-periodic tasks are supported through the use of interrupts.

In contrast with some other approaches to realtime, RTLinux leaves the
Linux kernel essentially untouched. Via a set of relatively simple modifica-
tions, it manages to convert the existing Linux kernel into a hard realtime
environment without hindering future Linux development.

Chapter 2

The Basic API: Writing
RTLinux Modules

This chapter Introduces critical concepts that must be grasped in order to
successfully write RTLinux modules. It also presents the basic Application
Programming Interface (API) used in all RTLinux programs. Then it steps
the user through the creation of a basic “Hello World” programming example,
which is intended to help the user in developing their very first RTLinux
program.

2.1 Understanding an RTLinux Program

In the latest versions of RTLinux, programs are not created as standalone
applications. Rather, they are modelled as modules which are loaded into the
Linux kernel space. A Linux module is nothing but an object file, usually
created with the -c flag argument to gcc. The module itself is created
by compiling an ordinary C language file in which the main () function is
replaced by a pair of init/cleanup functions:

int init_module();

void cleanup_module();

As its name implies, the init module () function is called when the module
is first loaded into the kernel. It should return 0 on success and a negative
value on failure. Similarly, the cleanup module is called when the module is
unloaded.

11

12 CHAPTER 2. THE BASIC API

For example, if we assume that a user has created a C file named my mo-

dule.c, the code can be converted into a module by typing the following:

gcc -c {SOME-FLAGS} my_module.c

This command creates a module file named my module.o, which can now be
inserted into the kernel. To insert the module into the kernel, we use the
insmod command. To remove it, the rmmod command is used.

Documentation for both of these commands can be accessed
by typing:

man 8 insmod, and
man 8 rmmod.

Here, the “8” forces the man command to look for the man-
ual pages associated with system administration. From now
on, we will refer to commands by their name and manual
category. Using this format, these two commands would be
referred to as insmod (8) and rmmod (8).

For further information on running RTLinux programs, refer to Appendix A.

2.2 The Basic API

Now that we understand the general structure of modules, and how to load
and unload them, we are ready to look at the RTLinux API.

2.2.1 Creating RTLinux POSIX Threads

A realtime application is usually composed of several “threads” of execution.
Threads are light-weight processes which share a common address space.
Conceptually, Linux kernel control threads are also RTLinux threads (with
one for each CPU in the system). In RTLinux, all threads share the Linux
kernel address space.

2.2. THE BASIC API 13

To create a new realtime thread, we use the pthread create(3) func-
tion. This function must only be called from the Linux kernel thread (i.e.,
using init module()):

#include <pthread.h>

int pthread_create(pthread_t * thread,

pthread_attr_t * attr,

void *(*start_routine)(void *),

void * arg);

The thread is created using the attributes specified in the “attr” thread
attributes object. If attr is NULL, default attributes are used. For more
detailed information, refer to the POSIX functions:

• pthread attr init(3),

• pthread attr setschedparam(3), and

• pthread attr getschedparam(3)

as well as these RTL-specific functions:

• pthread attr getcpu np(3) , and

• pthread attr setcpu np(3)

which are used to get and set general attributes for the scheduling parameters
and the CPUs in which the thread is intended to run.

The ID of the newly created thread is stored in the location pointed to
by “thread”. The function pointed to by start routine is taken to be the
thread code. It is passed the “arg” argument.

To cancel a thread, use the POSIX function:

pthread cancel(pthread thread);

You should join the thread in cleanup module with
pthread join() for its resources to be deallocated.

14 CHAPTER 2. THE BASIC API

You must make sure the thread is cancelled before call-
ing pthread join() from cleanup module(). Other-
wise, Linux will hang waiting for the thread to fin-
ish. If unsure, use pthread delete np(3) instead of
pthread cancel()/pthread join().

2.2.2 Time Facilities

RTLinux provides several clocks that can be used for timing functionality,
such as as referencing for thread scheduling and obtaining timestamps. Here
is the general timing API:

#include <rtl_time.h>

int clock_gettime(clockid_t clock_id, struct timespec *ts);

hrtime_t clock_gethrtime(clockid_t clock);

struct timespec {

time_t tv_sec; /* seconds */

long tv_nsec; /* nanoseconds */

};

To obtain the current clock reading, use the clock gettime(3) function
where clock id is the clock to be read and ts is a structure which stores the
value obtained.

The hrtime t value is expressed as a single 64-bit number of nanoseconds.
Thus, clock gethrtime(3) is the same as clock gettime, but returns the
time as an hrtime t rather than as a timespec structure.

2.2.3 Conversion Routines

Several routines exist for converting from one form of time reporting to the
other:

#include <rtl_time.h>

hrtime_t timespec_to_ns(const struct timespec *ts);

struct timespec timespec_from_ns(hrtime_t t)

const struct timespec * hrt2ts(hrtime_tvalue);

2.2. THE BASIC API 15

These are especially useful macros for passing time values into nanosleep,
pthread cond timedwait and the like.

Currently supported clocks are:

• CLOCK MONOTONIC: This POSIX clock runs at a steady rate, and
is never adjusted or reset.

• CLOCK REALTIME: This is the standard POSIX realtime clock. Cur-
rently, it is the same as CLOCK MONOTONIC. It is planned that in
future versions of RTLinux this clock will give the world time.

• CLOCK RTL SCHED: The clock that the scheduler uses for task schedul-
ing.

The following clocks are architecture-dependent. They are not normally
found in user programs.

• CLOCK 8254: Used on non-SMP x86 machines for scheduling.

• CLOCK APIC: Used on SMP x86 machines.

• CLOCK APIC: corresponds to the local APIC clock of the processor
that executes clock gettime. You cannot read or set the APIC clock
of other processors.

2.2.4 Scheduling Threads

RTLinux provides scheduling, which allows thread code to run at specific
times. RTLinux uses a pure priority-driven scheduler, in which the highest
priority (ready) thread is always chosen to run. If two threads have the
same priority, which one is chosen is undefined. RTLinux uses the following
scheduling API:

int pthread_setschedparam(pthread_t thread,

int policy,

const struct sched_param *param);

int pthread_make_periodic_np(pthread_t thread,

const struct itimerspec *its);

int pthread_wait_np(void);

int sched_get_priority_max(int policy);

16 CHAPTER 2. THE BASIC API

int sched_get_priority_min(int policy);

struct itimerspec {

struct timespec it_interval; /* timer period */

struct timespec it_value; /* timer expiration */

};

Thread priority can be modified at thread creation time by using:

pthread attr setschedparam(3)

or afterwards by using

pthread setschedparam(3) .

The policy argument is currently not used in RTLinux, but should be
specified as SCHED FIFO for compatibility with future versions. The struc-
ture sched param contains the sched priority member. Higher values cor-
respond to higher priorities. Use:

• sched get priority max(3) , and

• sched get priority min(3)

to determine possible values of sched priority.
To make a realtime thread execute periodically, users may use the non-

portable1 function:

pthread make periodic np(3)

which marks the thread as periodic. Timing is specified by the itimer struc-
ture its. The it value member of the passed struct itimerspec specifies
the time of the first invocation; the it interval is the thread period. Note
that when setting up the period for task T, the period specified in the itimer
structure can be 0. This means that task T will execute only once.

The actual execution timing is performed by use of the function:

1It is possible to have threads execute periodically within RTLinux by using the pure
POSIX API. However, this scheme is quite lengthy. This particular function has been
added, therefore, to reduce user development time.

2.3. A SIMPL “HELLO WORLD” RTLINUX PROGRAM 17

pthread wait np(3)

This function suspends the execution of the calling thread until the time
specified by:

pthread make periodic np(3)

In the next section we’ll put the API to practical use.

2.3 A Simpl “Hello World” RTLinux program

We’ll now write a small program that uses all of the API that we’ve learned
thus far. This program will execute two times per second, and during each
iteration it will print the message:

I’m here, my arg is 0

2.3.1 Code Listing

Save the following code under the filename hello.c:

#include <rtl.h>

#include <time.h>

#include <pthread.h>

pthread_t thread;

void * start_routine(void *arg) {

struct sched_param p;

p . sched_priority = 1;

pthread_setschedparam (pthread_self(), SCHED_FIFO, &p);

pthread_make_periodic_np (pthread_self(), gethrtime(),

500000000);

while (1) {

pthread_wait_np();

rtl_printf("I’m here; my arg is %x\n", (unsigned) arg);

}

return 0;

18 CHAPTER 2. THE BASIC API

}

int init_module(void) {

return pthread_create (&thread, NULL, start_routine, 0);

}

void cleanup_module(void) {

pthread_cancel (thread);

pthread_join (thread, NULL);

}

This program can be found in examples/hello.

Now, let’s analyze the code.

2.3.2 Dissecting “Hello World”

In our program, the

init module()

function begins the entire process by creating our execution thread – em-
bodied in the function start routine() – with an argument of 0 passed to
start routine().

start routine has three components: initialization, run-time and termi-
nation – best understood as the blocks before, during and after the while()

loop, respectively.

Upon the first call to the newly-created thread start routine(), the
initialization section tells the scheduler to assign this thread a scheduling
priority of 1 (one) with the call to p.sched priority. Next, the thread sets
the scheduler’s behavior to be SCHED FIFO for all subsequent executions
with the call to pthread setschedparam. Finally, by calling the function:

pthread make periodic np()

2.3. A SIMPL “HELLO WORLD” RTLINUX PROGRAM 19

the thread tells the scheduler to periodically execute this thread at a fre-
quency of 2Hz (500 microseconds). This marks the end of the initialization
section for the thread.

The while() loop begins with a call to the function:

pthread wait np()

which blocks all further execution of the thread until the scheduler calls it
again. Once the thread is called again, it executes the rest of the contents
inside the while loop, until it encounters another call to:

pthread wait np()

Because we haven’t included any way to exit the loop, this thread will con-
tinue to execute forever at a rate of 2Hz. The only way to stop the program
is by removing it from the kernel with the rmmod(8) command.

2.3.3 Compiling and Executing “Hello World”

In order to execute our program, we must first do the following:

1. Compile the source code and create a module. We can normally accom-
plish this by using the Linux GCC compiler directly from the command
line. To simplify things, however, we’ll create a Makefile. Then we’ll
only need to type “make” to compile our code.

2. Locate and copy the rtl.mk file. The rtl.mk file is an include file which
contains all the flags needed to compile our code. For simplicity, we’ll
copy it from the RTLinux source tree and place it alongside of our
hello.c file.

3. Insert the module into the running RTLinux kernel. The resulting ob-
ject binary must be “plugged in” to the kernel, where it will be executed
by RTLinux.

Let’s look at these steps in some detail.
We begin by creating the Makefile that will be used to compile our

hello.c program. Type the following into a file called Makefile and put it
in the same directory as your hello.c program:

20 CHAPTER 2. THE BASIC API

hello.o: hello.c

gcc $(CFLAGS) hello.c

If you haven’t already done so, locate the file rtl.mk and copy it into
the same directory as your hello.c and Makefile files. The rtl.mk file can
usually be found at /usr/include/rtlinux/rtl.mk.

cp /usr/include/rtlinux/rtl.mk .

(Note the trailing dot (.).)
Now, type the following:

make -f rtl.mk hello.o

This compiles the hello.c program and produces an object file named
hello.o.

We now need to load the RTLinux modules. There are several ways to
do this. The easiest is to use the rtlinux(1) command (as root):

rtlinux start hello

You can check the status of your modules by typing the command:

rtlinux status hello

For more information about the usage of the rtlinux(1) command, refer
to its man page, or type:

rtlinux help

You should now be able to see your hello.o program printing its message
twice per second. Depending on the configuration of your machine, you
should either be able to see it directly in your console, or by typing:

dmesg

To stop the program, we need to remove it from the kernel. To do so,
type:

rtlinux stop hello

For other ways on running RTLinux programs, refer to Appendix A.
Congratulations, you have now successfully created and run your very

first RTLinux program!

Chapter 3

The Advanced API: Getting
More Out of Your RTLinux
Modules

RTLinux has a rich assortment of functions which can be used to solve most
realtime application problems. This chapter describes some of the more
advanced concepts.

3.1 Using Floating Point Operations in RT-

Linux POSIX Threads

The use of floating-point operations in RTL POSIX threads is prohibited by
default. The RTL-specific function pthread setfp np(3) is used to change
the status of floating-point operations.

int pthread_setfp_np (pthread_tthread, int flag);

To enable FP operations in the thread, set the flag to 1. To disable FP
operations, pass 0.

The examples/fp directory contains several examples of tasks which use
floating point and the math library.

21

22 CHAPTER 3. THE ADVANCED API

3.2 RTLinux Inter-Process Communication (IPC)

The general philosophy of RTLinux requires the realtime component of an
application to be lightweight, small and simple. Applications should be split
in such a way that, as long as timing restrictions are met, most of the work
is done in user space. This approach makes for easier debugging and better
understanding of the realtime part of the system. Consequently, communi-
cation mechanisms are necessary to interface RTLinux tasks and Linux.

RTLinux provides several mechanisms which allow communication be-
tween realtime threads and user space Linux processes. The most important
are realtime FIFOs and shared memory.

3.2.1 Using Real-Time FIFOs

Realtime FIFOs are First-In-First-Out queues that can be read from and
written to by Linux processes and RTLinux threads. FIFOs are uni-directional
– you can use a pair of FIFOs for bi-directional data exchange. To use the
FIFOs, the system/rtl posixio.o and fifos/rtl fifo.o Linux modules
must be loaded in the kernel.

RT-FIFOs are Linux character devices with the major number of 150.
Device entries in /dev are created during system installation. The device file
names are /dev/rtf0, /dev/rtf1, etc., through /dev/rtf63 (the maximum
number of RT-FIFOs in the system is configurable during system compila-
tion).

Before a realtime FIFO can be used, it must be initialized:

#include <rtl_fifo.h>

int rtf_create(unsigned int fifo, int size);

int rtf_destroy(unsigned int fifo);

rtf create allocates the buffer of the specified size for the fifo buffer. The
fifo argument corresponds to the minor number of the device. rtf destroy

deallocates the FIFO.

These functions must only be called from the Linux kernel
thread (i.e., from init module()).

3.2. RTLINUX IPC 23

After the FIFO is created, the following calls can be used to

access it from RTLinux threads: open(2) , read(2) , write(2)

and close(2) . Support for other STDIO functions is planned for

future releases.

Current implementation requires the FIFOs to be opened in
non-blocking mode (O NONBLOCK) by RTL threads.

You can also use the RTLinux-specific functions rtf put (3) and

rtf get (3) .

Linux processes can use UNIX file IO functions without restriction.

See the examples/measurement/rt process.c example program for a practical

application of RT-FIFOs.

3.2.2 Using Shared Memory

For shared memory, you can use the excellent mbuff driver by To-

masz Motylewski (motyl@chemie.unibas.ch. It is included with the

RTLinux distribution and is installed in the drivers/mbuff directory.

A manual is included with the package. Here, we’ll just briefly

describe the basic mode of operation.

First, the mbuff.o module must be loaded in the kernel. Two functions

are used to allocate blocks of shared memory, connect to them and

eventually deallocate them.

#include <mbuff.h>

void * mbuff_alloc(const char *name, int size);

void mbuff_free(const char *name, void * mbuf);

The first time mbuff alloc is called with a given name, a shared

memory block of the specified size is allocated. The reference count

for this block is set to 1. On success, the pointer to the newly

allocated block is returned. NULL is returned on failure. If the

block with the specified name already exists, this function returns

a pointer that can be used to access this block and increases the

reference count.

24 CHAPTER 3. THE ADVANCED API

mbuff free deassociates mbuff from the specified buffer. The

reference count is decreased by 1. When it reaches 0, the buffer

is deallocated.

These functions are available for use in both Linux processes

and the Linux kernel threads.

mbuff alloc and mbuff free cannot be used from real-
time threads. You should call them from init module and
cleanup module only.

3.2.3 Waking and Suspending RTLinux Threads

Interrupt-driven RTLinux threads can be created using the thread

wakeup and suspend functions:

int pthread_wakeup_np(pthread_t thread);

int pthread_suspend_np(void);

The general idea is that a threaded task can be either awakened

or suspended from within an interrupt service routine.

An interrupt-driven thread calls pthread suspend np(pthread self())

and blocks. Later, the interrupt handler calls pthread wakeup np(3)

for this thread. The thread will run until the next call to pthread suspend np(3)

. An example can be found in examples/sound/irqthread.c.

Another way to implement interrupt-driven threads is to use semaphores.

See examples/measurements/irqsema.c for examples of this method.

3.2.4 Mutual Exclusion

Mutual exclusion refers to the concept of allowing only one task

at a time (out of many) to read from or write to a shared resource.

Without mutual exclusion, the integrity of the data found in that

shared resource could become compromised. Refer to the appendix

for further information on mutual exclusion.

RTLinux supports the POSIX pthread mutex family of functions

(include/rtl mutex.h). Currently the following functions are available:

3.3. ACCESSING MEMORY 25

• pthread mutexattr getpshared(3)

• pthread mutexattr setpshared(3)

• pthread mutexattr init(3)

• pthread mutexattr destroy(3)

• pthread mutexattr settype(3)

• pthread mutexattr gettype(3)

• pthread mutex init(3)

• pthread mutex destroy(3)

• pthread mutex lock(3)

• pthread mutex trylock(3)

• pthread mutex unlock(3)

The supported mutex types include:

• PTHREAD MUTEX NORMAL (default POSIX mutexes) and

• PTHREAD MUTEX SPINLOCK (spinlocks)

See examples/mutex for a test program. POSIX semaphores are also

supported. An example using POSIX semaphores can be found in examples/-

mutex/sema test.c.

3.3 Accessing Physical Memory and I/O Ports

from RTLinux Threads

These capabilities are essential for programming hardware devices

in the computer. RTLinux, just like ordinary Linux, supports the

/dev/mem device (man 4 mem) for accessing physical memory from

RTLinux threads. The rtl posixio.o module must be loaded. The program

opens /dev/mem, mmaps it, and then proceeds to read and write the

mapped area. See examples/mmap for an example.

26 CHAPTER 3. THE ADVANCED API

In a module, you can call mmap from Linux mode only (i.e.,
from init module()). Calling mmap from RT-threads will
fail.

Another way to access physical memory is via Linux’s ioremap
call:

char *ptr = ioremap(PHYS_AREA_ADDRESS, PHYS_AREA_LENGTH);

...

ptr[i] = x;

IO port access functions (specifically for x86 architecture) are

as follows:

• Output a byte to a port:

#include <asm/io.h>

void outb(unsigned int value, unsigned short port)

void outb_p(unsigned int value, unsigned short port)

• Output a word to a port:

#include <asm/io.h>

void outw(unsigned int value, unsigned short port)

void outw_p(unsigned int value, unsigned short port)

• Read a byte from a port:

#include <asm/io.h>

char inb(unsigned short port)

char inb_p(unsigned short port)

• Read a word from a port:

#include <asm/io.h>

short inw(unsigned short port)

short inw_p(unsigned short port)

3.4. INTERRUPTS 27

Functions with the ‘‘ p’’ suffix (e.g., outb p) provide a small

delay after reading or writing to the port. This delay is needed

for some slow ISA devices on fast machines. (See also the Linux

I/O port programming mini-HOWTO).

Check out examples/sound to see how some of these functions are

used to program the PC realtime clock and the speaker.

3.4 Soft and Hard Interrupts

There are two types of interrupts in RTLinux: hard and soft.

Soft interrupts are normal Linux kernel interrupts. They have

the advantage that some Linux kernel functions can be called from

them safely. However, for many tasks they do not provide hard realtime

performance; they may be delayed for considerable periods of time.

Hard interrupts (or realtime interrupts), on the other hand, have

much lower latency. However, just as with realtime threads, only

a very limited set of kernel functions may be called from the hard

interrupt handlers.

3.4.1 Hard Interrupts

The two functions:

• rtl request irq(3) and

• rtl free irq(3)

are used for installing and uninstalling hard interrupt handlers

for specific interrupts. The manual pages describe their operation

in detail.

#include <rtl_core.h>

int rtl_request_irq(unsigned int irq,

unsigned int (*handler) (unsigned int,

struct pt_regs *));

int rtl_free_irq(unsigned int irq);

28 CHAPTER 3. THE ADVANCED API

3.4.2 Soft interrupts

int rtl_get_soft_irq(

void (*handler)(int, void *, struct pt_regs *),

const char * devname);

void rtl_global_pend_irq(int ix);

void rtl_free_soft_irq(unsigned int irq);

The rtl get soft irq(3) function allocates a virtual irq number

and installs the handler function for it. This virtual interrupt

can later be triggered using rtl global pend irq(3) . rtl global pend irq

is safe to use from realtime threads and realtime interrupts. rtl free soft irq(3)

frees the allocated virtual interrupt.

Note that soft interrupts are used in the RTLinux FIFO implementation

(fifos/rtl fifo.c).

Chapter 4

Special Topics

You may never find yourself needing to know any of the following.

Then again, you might.

4.1 Symmetric Multi-Processing Considera-

tions

From the point of view of thread scheduling, RTLinux implements a

separate UNIX process for each active CPU in the system. In general,

thread control functions can only be used for threads running on

the local CPU. Notable exceptions are:

• int pthread wakeup np(pthread t thread) : wake up suspended

thread

• int pthread cancel (pthread t thread) : cancel thread

• int pthread join(pthread t thread) : wait for thread to finish

• int pthread delete np (pthread t thread) : kill the thread

By default, a thread is created to run on the current CPU. To

assign a thread to a particular CPU, use the pthread attr setcpu np(3)

function to set the CPU pthread attribute. See examples/mutex/-

mutex.c.

29

30 CHAPTER 4. SPECIAL TOPICS

4.2 RTLinux Serial Driver (rt com)

rt com(3) is a driver for 8250 and 16550 families of UARTs commonly

used in PCs (COM1, COM2, etc.). The available API is as follows:

#include <rt_com.h>

#include <rt_comP.h>

void rt_com_write(unsigned int com, char *pointer, int cnt);

int rt_com_read(unsigned int com, char *pointer, int cnt);

int rt_com_setup(unsigned int com, unsigned int baud,

unsigned int parity, unsigned int stopbits,

unsigned int wordlength);

#define RT_COM_CNT n

struct rt_com_struct

{

int magic; // unused

int baud-base; // base-rate; 11520

// (BASE_BAUD in rt_comP.h;

// for standard ports.

int port; // port number

int irq; // interrupt number (IRQ)

// for the port

int flag; // flags set for this port

void (*isr)(void) // address of the interrupt

// service routine

int type; //

int ier; // a copy of the IER register

struct rt_buf_struct ibuf; // address of the port input

// buffer

struct rt_buf_struct obuf; // address of the port output

// buffer

} rt_com_table [RT_COM_CNT];

where

• rt com write(3) - writes cnt characters from buffer ptr to the

realtime serial port com.

4.3. INTERFACING RTLINUX COMPONENTS TO LINUX 31

• rt com read(3) - attempts to read cnt characters to buffer ptr

from the realtime serial port com.

• rt com setup(3) - is used to dynamically change the parameters

of each realtime serial port.

rt com is a Linux module. The user must specify relevant serial

port information via entries in rt com setup. In addition, the user

must specify -- via entries in the rt com table (located in rt com.h)

-- the following:

• Number of serial ports available (n)

• Serial ports and relevant parameters for each, and

• An ISR to be executed when the port irq fires.

When rt com (3) is installed with either insmod(8), modprobe(8)

or rtlinux(1) , its init module() function (in rt com.c) requests

the port device memory, registers the ISR and sets various default

values for each port entry in rt com table.

4.3 Interfacing RTLinux Components to Linux

RTLinux threads, sharing a common address space with the Linux kernel,

can in principle call Linux kernel functions. This is usually not

a safe thing to do, however, because RTLinux threads may run even

while Linux has interrupts disabled. Only functions that do not

modify Linux kernel data structures (e.g., vsprintf) should be called

from RTLinux threads.

RTLinux provides two delayed execution mechanisms to overcome

this limitation: soft interrupts and task queues.

The RTLinux white paper discusses this topic in more detail.

32 CHAPTER 4. SPECIAL TOPICS

4.4 Writing RTLinux Schedulers

Most users will never be required to write a scheduler. Future versions

of RTLinux are expected to have a fully customizable scheduler, but

in the meantime, here are some points to help the rest of you along:

• The scheduler is implemented in the scheduler/rtl sched.c file

• The scheduler’s architecture-dependent files are located in

include/arch-i386 and scheduler/i386

• The scheduling decision is taken in the rtl schedule() function.

Thus, by modifying this function, it is possible to change the

scheduling policy.

Further questions in this area may be addressed directly to the

FSM Labs Crew.

Appendix A

Running RTLinux Programs

Your RTLinux distribution comes complete with several examples in

the examples/ sub-directory. These examples are useful, not only

for testing your brand new RTLinux distribution, but for helping

get you started writing your own RTLinux programs.

A.1 General

Before you will be able to run any RTLinux programs, you must first

insert the RTLinux scheduler and support modules in the modules into

the Linux kernel. Use any of the following:

• rtlinux(1) script, the preferred method,

• insmod(8),

• modprobe(8), or

• the insrtl script file that has been supplied for you in the

scripts directory.

For more information on Linux modules and how to manipulate them,

see the Linux Kernel-HOWTO .

The following sections describe each of these methods in more

detail.

33

34 APPENDIX A. RUNNING RTLINUX PROGRAMS

A.2 Examples

A.2.1 Using rtlinux

Beginning with RTLinux 3.0-pre9, users can load and remove user modules

by using the rtlinux(1) command. To insert, remove, and obtain

status information about RTLinux modules, use the following commands:

rtlinux start my program

rtlinux stop my program

rtlinux staus my program

For further information on the the rtlinux(1) script, type either:

man 1 rtlinux

or

rtlinux help.

A.2.2 Using modprobe

all the RTLinux modules, type the following:

modprobe -a rtl rtl_time rtl_sched rtl_posixio rtl_fifo

Using modprobe requires that modules be installed in
/lib/modules/kernel version.

A.2.3 Using insmod and rmmod

Suppose we have the appropriately named my program.o. Assuming that

all the appropriate RTLinux modules have already been loaded, all

that’s left to do is to load this module into the kernel:

insmod my_program.o

To stop the program, all we need do is type:

rmmod my_program

Appendix B

The RTLinux API at a Glance

Some paths to be aware of:

• RTLinux is installed in the directory /usr/rtlinux-xxx, where

xxx is the version number. To simplify future development,

a symbolic link has been created as /usr/rtlinux which points

to /usr/rtlinux-xxx. Users are encouraged to specify their

paths via this symbolic link to maintain future compatibility

with new RTLinux versions.

• /usr/rtlinux/include contains all the include files necessary

for development projects.

• /usr/rtlinux/examples contains the RTLinux example programs,

which illustrate the use of much of the API.

• /usr/doc/rtlinux/man contains the manual pages for RTLinux.

• /usr/rtlinux/modules contains the core RTLinux modules.

• /usr/rtlinux/bin contains RTLinux scripts and utilities.

The following sections provide a listing of the various utilities

and APIs available in RTLinux.

35

36 APPENDIX B. RTLINUX API REFERENCE

B.1 Getting Around

There are several manual pages which give overviews on the technology

and the APIs.

• rtl v1 (3) : RTLinux facilities for RTLinux v1.x.

The RTLinux V1 API is presented exclusively for backwards
compatibility. It is no longer recommended for new projects.
Users are strongly discouraged from starting any new projects
with this API.

• rtf (4) : realtime fifo devices

• rtl index (4) : A comprehensive list of RTLinux functions.

• rtlinux (4) : A general roadmap and description to RTLinux

B.2 Scripts and Utilities

The following utilities are designed to make your programming job

easier.

• rtl-config (1) : script used to get information about the installed

version of RTLinux, cflags, include paths, and documentation

paths.

• rtlinux (1) : SysV compatible script used to start RTLinux

and load the user’s RTLinux modules

B.3 Core RTLinux API

Here is the main RTLinux API. You are encouraged to use this API

for all new projects.

• clock gethrtime (3) : get high resolution time using the specified

clock

B.3. CORE RTLINUX API 37

• clock gettime : clock and timer functions

• clock settime : clock and timer functions

• gethrtime (3) : get high resolution time

• nanosleep : high resolution sleep

• pthread attr getcpu np (3) : examine and change the CPU pthread

attribute

• pthread attr getschedparam : dynamic thread scheduling parameters

access

• pthread attr getdetachstate : get detachstate attributes

• pthread attr getstacksize : get stacksize attribute

• pthread attr init : initialize threads attribute object

• pthread attr setcpu np (3) : examine and change the CPU pthread

attribute

• pthread attr setdetachstate : set detachstate attributes

• pthread attr setfp np (3) : set and get floating point enable

attribute

• pthread attr setschedparam : dynamic thread scheduling parameters

access

• pthread attr setstacksize : set stacksize attribute

• pthread cancel (3) : stop and cancel a thread (not recommended)

• pthread create (3) : create a thread

• pthread condattr destroy : destroy condition variable attributes

object

• pthread condattr getpshared : get the process-shared condition

variable attributes

38 APPENDIX B. RTLINUX API REFERENCE

• pthread condattr init : initialize condition variable attributes

object

• pthread condattr setpshared : set the process-shared condition

variable attributes

• pthread cond broadcast : broadcast a condition

• pthread cond destroy : destroy condition variable

• pthread cond init : initialize condition variable

• pthread cond signal : signal a condition

• pthread cond timedwait : wait on a condition variable

• pthread cond wait : wait on a condition variable

• pthread delete np (3) : delete a realtime thread

• pthread exit : thread termination

• pthread join (3) : terminate a thread

• pthread kill (3) : send a signal to a thread

• pthread linux (3) : get the thread identifier of the Linux

thread

• pthread make periodic np (3) : mark a realtime thread as periodic

• pthread mutexattr destroy(3) : Destroys a mutex attribute object.

• pthread mutexattr getprioceiling : get priority ceiling attribute

of mutex attribute object.

• pthread mutexattr getpshared : obtains the process-shared setting

of a mutex attribute object.

• pthread mutexattr gettype : get the mutex type

• pthread mutexattr init : initializes a mutex attribute object.

B.3. CORE RTLINUX API 39

• pthread mutexattr setprioceiling : set priority ceiling attribute

of mutex attribute object.

• pthread mutexattr setpshared : sets the process-shared attribute

of a mutex attribute object

• pthread mutexattr settype : set the mutex type

• pthread mutex destroy : destroys a mutex

• pthread mutex init(3) : initializes a mutex with the attributes

specified in the specified mutex attribute object.

• pthread mutex lock : locks an unlocked mutex. If the mutex

is already locked, the calling thread blocks until the thread

that currently holds the mutex releases it.

• pthread mutex trylock : tries to lock a mutex. If the mutex

is already locked, the calling thread returns without wating

for the mutex to be freed.

• pthread mutex unlock : unlocks a mutex.

• pthread getschedparam : get schedparam attribute

• pthread self : get calling thread’s ID

• pthread setcancelstate : set cancelability state

• pthread setschedparam : set schedparam attribute

• pthread setfp np (3) : allow use of floating-point operations

in a thread.

• pthread suspend np (3) : suspend execution of a realtime thread.

• pthread wait np (3) : suspend the current thread until the

next period

• pthread wakeup np (3) : wake up a realtime thread.

• rt com (3) : serial port driver for RTLinux

40 APPENDIX B. RTLINUX API REFERENCE

• rt com read (3) : read data in realtime from a serial por

• rt com setup (3) : dynamically change the parameters of each

realtime serial port.

• rt com table (3) : an array of descriptions, one per serial

port.

• rt com write (3) : write data in realtime to a serial port

• rtf create (3) : create a realtime fifo

• rtf create handler (3) : install a handler for realtime fifo

data

• rtf create rt handler (3) : install a handler for realtime fifo

data

• rtf destroy (3) : remove a realtime fifo created with rtf create(3)

• rtf flush (3) : empty a realtime FIFO

• rtf get (3) : read data from a realtime fifo

• rtf link user ioctl (3) : install an ioctl (3) handler for a

realtime FIFO.

• rtf put (3) : write data to a realtime fifo

• rtf make user pair (3) : make a pair of RT-FIFOs act like a

bidirectional FIFO

• rtl allow interrupts (3) : control the CPU interrupt state

• rtl free irq (3) : install and remove realtime interrupt handlers

• rtl free soft irq (3) : install and remove software interrupt

handlers

• rtl get soft irq (3) : install and remove software interrupt

handlers

B.3. CORE RTLINUX API 41

• rtl getcpuid (3) : get the current processor id

• rtl getschedclock (3) : get the current scheduler clock

• rtl global pend irq (3) : schedule a Linux interrupt

• rtl hard disable irq (3) : interrupt control

• rtl hard enable irq (3) : interrupt control

• rtl no interrupts (3) : control the CPU interrupt state

• rtl printf (3) : print formatted output

• rtl request irq (3) : install and remove realtime interrupt

handlers

• rtl restore interrupts (3) : control the CPU interrupt state

• rtl setclockmode (3) : set the RTLinux clock mode

• rtl stop interrupts (3) : control the CPU interrupt state

• rtlinux sigaction (3) : RTLinux v3 User-Level signal handling

functions.

• rtlinux signal (3) : list of available RTLinux User-Level signals

• rtlinux sigprocmask (3) : RTLinux v3 User-Level signal handling

functions.

• rtlinux sigsetops (3) : RTLinux User-Level signal set operations

• sched get priority max : get priority limits for the scheduling

policy

• sched get priority min : get priority limits for the scheduling

policy

• sem init : initialize POSIX semaphore

• sem destroy : destroy an unnamed POSIX semaphore

• sem getvalue : get the value of a sempahore

42 APPENDIX B. RTLINUX API REFERENCE

• sem post : unlock a semaphore

• sem trywait : lock a semaphore

• sem wait : lock a semaphore

• sigaction (2) : RTLinux POSIX signal handling functions

• sysconf : get configurable system variables

• time : clock and timer functions

• uname : get name of current system

• usleep : suspend execution for an interval

B.4 Version 1.x API: Not for New Projects

The v1 API is exclusively for older RTLinux projects. It is NOT

recommended for use with new projects. This listing is for backward

compatibility only:

• free RTirq (3) : uninstall an interrupt handler

• request RTirq (3) : install an interrupt handler

• rt get time (3) : get time in ticks

• rt task delete (3) : delete a realtime task

• rt task init (3) : create a realtime task

• rt task make periodic (3) : mark a realtime task for execution.

• rt task suspend (3) : suspend execution of a realtime task.

• rt task wait (3) : suspend execution for the current period

until the next period

• rt task wakeup (3) : allow a previously suspended realtime

task to run.

• rt use fp (3) : set/remove permission for task to use floating

point unit

