Rechargeable battery types

- Nickel Cadmium (NiCd)
 - long cycle life, high load current and economical
- Nickel-Metal Hydride (NiMH)
 - higher energy density than NiCd at the expense of reduced cycle life and lower load current
- Lead Acid
 - cheap, easily rechargeable and capable of high current pulses, but heavy
- Lithium Ion (Li-ion) and Lithium Ion Polymer (Li-on polymer)
 - high energy density making them very compact, but low load current, expensive and difficult to charge

Characteristics of rechargeable batteries¹

	NiCd	NiMH	Lead Acid	Li-ion	Li-ion polymer
Gravimetric Energy Density (Wh/kg)	45-80	60-120	30-50	110-160	100-130
Internal Resistance (in mΩ} (includes peripheral circuits)	100 to 200 ¹ 6V pack	200 to 300 ¹ 6V pack	<100 ¹ 12V pack	150 to 250 ¹ 7.2V pack	200 to 300 ¹ 7.2V pack
Cycle Life (to 80% of initial capacity)	1500 ²	300 to 500 ^{2,3}	$200 \text{ to } 300^2$	500 to 1000 ³	300 to 500
Fast Charge Time	1h typical	2-4h	8-16h	2-4h	2-4h
Overcharge Tolerance	moderate	low	high	very low	low
Self-discharge / Month (room temperature)	20%4	30%4	5%	10%5	~10% ⁵
Cell Voltage (nominal)	$1.25V^{6}$	$1.25V^{6}$	2V	3.6V	3.6V
Load Current - peak - best result	20C 1C	5C 0.5C or lower	$5C^7$ 0.2C	>2C 1C or lower	>2C 1C or lower
Operating Temperature ⁸ (discharge only)	-40 to 60°C	-20 to 60°C	-20 to 60°C	-20 to $60^{\circ}C$	0 to $60^{\circ}\mathrm{C}$
Maintenance Requirement	30 to 60 days	60 to 90 days	3 to 6 months ⁹	not req.	not req.
Typical Battery Cost ¹⁰ (US\$, reference only)	\$50 (7.2V)	\$60 (7.2V)	\$25 (6V)	\$100 (7.2V)	\$100 (7.2V)
Cost per Cycle (US\$) ¹¹	\$0.04	\$0.12	\$0.10	\$0.14	\$0.29
Commercial use since	1950	1990	1970	1991	1999

[1] Buchmann, I., "What is the perfect battery?", www.cadex.com, April 2001

Battery capacity

- capacity amount of stored energy
 - typically specified in (misleading) unit of *ampere-hours* (A·hr)
 - multiply A·hr rating by battery voltage V to get energy units Watt·hr recalling
 - unit of energy is Joule = Watt·sec
 - power P is rate energy E is being generated or dissipated, P = dE/dt
 - given a 12V lead acid battery rated at 2.0A·hr approximately how long would the battery be able to supply a fixed current of 1.5A to a device?

 $P = 12V \times 1.5A = 18W$ E - E(0) = 2.0A · hr × 12V = 24W · hr $= \int_{\lambda=0}^{t} Pd\lambda = 18W \cdot t$ $\Rightarrow t = 24W \cdot hr/18W = 1.3hr$

or using A·hr rating (reason for A·hr units now seen) $t = 2.0A \cdot hr/1.5A = 1.3hr$

Power budget

- - node equation: $I = I_1 + I_2 + I_3 + I_4$
 - multiply by battery voltage V to get power equation:

 $\mathbf{P} = \mathbf{VI} = \mathbf{VI}_1 + \mathbf{VI}_2 + \mathbf{VI}_3 + \mathbf{VI}_4$

– assuming constant power P and given a specified run-time t, battery capacity can be found via $P \cdot t$

Power regulation

- goal: provide constant voltage to a load even as input voltage and load vary
- linear regulator
 - cheap, dropout voltage $\Rightarrow V_{in} > V_{out}$, linear $\Rightarrow I_{in} = I_{out} \Rightarrow$ lost power = $I_{in}(V_{in} - V_{out}) (= 0.5A (12V - 5V) = 3.5W$ for 12V battery, 5V linear regulator and 0.5A current draw)
- dc-dc converter (switching regulator)
 - expensive, capacitors or inductors are switched in such a way that $V_{out} \ge V_{in}$ or $V_{out} \le V_{in}$, often over 80% efficient