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1 TIME OF ARRIVAL LOCATION TECHNIQUE

1.1 TOA Principals

Introdution

Systems that measure the arrival times of sig-
nals can accurately locate the signals in 2- or
3-dimensional space and time. Among other
things, this approach forms the basis for the
Global Positioning System (GPS) that is pro-
viding revolutionary technological, societal, and
scientific developments. Time-of-arrival (TOA)
measurements, as they are called, are also used
in locating cell phones, for seismological stud-
ies and in Tech’s Lightning Mapping Array. In
this laboratory we will develop the basic ideas
behind TOA systems and explore the mathe-
matics behind them.

TOA systems basically solve the equation
velocity times time equals distance, v · t = d, or
more specifically, vδt = δℓ, where δt = (ti − t)
is the difference between the arrival time ti at
location i and the source time t, and δℓ is the
distance between the the measurement location
xi,yi,zi and source location x,y,z. Thus, from
the Pythagorean theorem, we have that

v(ti − t) =
√

(xi − x)2 + (yi − y)2 + (zi − z)2 .
(1)

Measuring ti at 4 or more locations is sufficient
to determine the 4 unknowns x, y, z, and t (Fig-
ure 1).

For simplicity we will consider the 2-dimen-
sional case in which the source and measure-
ment locations lie in the same z plane. For this
case, zi = z and (1) becomes

v(ti − t) =
√

(xi − x)2 + (yi − y)2 . (2)

The 3 unknowns x, y, t can be determined from
measurements of ti at 3 different locations.1

The manner in which the arrival time mea-
surements locate the source can be determined
graphically from the fact that the differences in

1This is not exactly true, either for the 2- or 3-

dimensional case, as we shall see.

(x; y; z; t)

(xi; yi; zi; ti)
(x� xi)2 + (y � yi)2 + (z � zi)2
2(t� ti)2 =

Figure 1: Geometry of TOA location technique.

the arrival times at a pair of stations i,j con-
strain the source to lie on a hyperboloid of rev-
olution about the baseline between the two sta-
tions. This can be seen by reviewing the basic
properties of ellipses and hyperbolas.

Ellipses and Hyperbolas

An ellipse has the property that sum of the dis-
tances from the two foci of the ellipse is a con-
stant

d1 + d2 = 2a . (3)

The equation for the ellipse shown in Figure 2
is

y2

a2
+

x2

b2
= 1 . (4)

Exercise 1: Show that the x- and y- intercepts
of the ellipse are at x = ±b and y = ±a. Also
show that the distance c of the foci from the x
axis is related to a and b by

b2 + c2 = a2 . (5)

(Hint: Look for a right triangle having the sug-
gested sides.)

Hyperbolas, on the other hand, have the
property that their locus of points has a con-
stant difference from the two foci.

|d1 − d2| = 2a . (6)

Since the difference can be either positive or
negative, the property applies to the magnitude

of the difference. Note that for a given set of
foci, there are two hyperbolae that satisfy the

2



d2

d1

P (x,y)

y

x

+c

− c

+a

− a

− b +b

Figure 2: Geometry of an ellipse.

+c

− c

+a

− a

− b +b

y

d1

d2

P (x,y)+d

− d

x
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relation (upward and downward), and that un-
like the ellipses, they are open curves. The equa-
tion for the upward and downward hyperbolae
shown in Figure 3 is the same as that for an
ellipse, except for a minus sign in the second
term:

y2

a2
− x2

b2
= 1 . (7)

Whereas the foci of the equivalent ellipse are
at y = ±c, the foci of the hyperbolae are at
y = ±d. A similar relation exists between d and
the parameters a and b, namely

a2 + b2 = d2 . (8)

Exercise 2: Show that the y- intercepts of the
hyperbolae are at y = ±a, and that the asymp-
totes of the ellipse (the dashed lines in Figure 3
are given by .

y = ±
(a

b

)

x . (9)

Expression 8 relating a, b, and d is more difficult

to show – can you figure out how to derive it?

Hyperbolic TOA Relations

Considering the x,y locations of the two foci of
the hyperbolae to correspond to the locations
of two TOA measurement locations, it is not
difficult to see that the locus of points of the
hyperbolae, corresponding to a constant distant

difference between the distances d1 and d2, also
corresponds to a constant or given time differ-
ence of arrival (TDOA) at the two locations. We
will denote this time difference of arrival as ∆t.

Exercise 3: Show that the above statement
holds, and determine the parameters a and d for
a pair of stations separated by a distance D (the
‘baseline’ length between the stations). [Partial
answer: a = v|∆t|/2.]

Geometric Solutions:

Do the following:
• Write a .m program that plots the hyper-

bolae corresponding to a = 5 and b = 3, and the
asymptotes of the hyperbolae. The plot should
cover the range x = ±30 and y = ±20 units.
Add the equivalent ellipse to the plot, as in Fig-
ure 3, and show the foci of both the hyperbolae
and the ellipse. (An sample program is provided
to get you started.) Make sure your program is
commented to explain what you are doing. Save
this program, and use it as a starting point for
the other programs discussed below.

• To plot a rotated hyperbola, it is neces-
sary to do a coordinate transformation. The
transformation used to plot the hyperbola cor-
responding to a particular baseline takes points
calculated in an x”, y” coordinate system in which
the baseline is vertically upward (in which the
hyperbolae are easy to calculate), and rotates
the points clockwise by an angle θ so that the y′′

axis is correctly oriented with the actual base-
line in the network’s x, y coordinate system. It
then offsets the resulting points away from be-
ing centered around (0,0) to the center (x0, y0)
of the actual baseline. From a carefully drawn
sketch of the geometry of the (′′) to (′) trans-
formation, determine the matrix expression for
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Figure 4: Coordinate transformation.

converting (x′′, y′′) values to (x′, y′) values, and
confirm that it is the same as used in the trans-
form program. You need to find the matrix co-
efficients so that:

[

x′

y′

]

=

[

a11 a12

a21 a22

] [

x′′

y′′

]

Do the same for the translation from the (′)
to the unprimed system. Using these results,
complete the attached Matlab function xfm1.

• Modify your hyperbola-plotting program
to plot the hyperbolae when the center of the
stations is at location x0 = 10 and y0 = 5 units,
with the baseline between the stations rotated
60◦ from the vertical. Your plot should look
similar to that shown in Figure 5. Use the com-
pleted function xfm1 to rotate and translate the
hyperbolae. Use the ‘axis equal’ command (do
a ‘help axis’) to give a 1:1 aspect ratio so that
the hyperbolae look correct.

• Again saving the program as a separate
file, further modify it to show how the hyper-
bolas corresponding to TOA measurements at
three stations locate a source in two spatial di-
mensions. Let the station locations be at the
vertices of the isosceles triangle x1,y1 = (−10,−10)
x2,y2 = (+10,−10), and x3,y3 = (0,+10) km,
respectively. Use Matlab’s ‘input’ function to
specify a source location (also in km units), and
calculate the times the signal would be received
at each station. Finally, plot the hyperbolae
corresponding to each of the three baselines to
see the solution. Use the ‘pause’ function in
your for loop to identify each hyperbola as it is
added to the plot. Your plot should look some-
thing like Figure 6.

• An interesting property of the TOA solu-
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Rotated hyperbola:  θ = 60 deg;  x,y offset = (10, 5);  (WR 1/21/08)

Figure 5: Rotated hyperbola.

tions is that they are not unique in some regions
of the x,y domain when the number of mea-
surements is just enough to determine the un-
knowns. For example, examine the hyperbolae
for a source at x, y = (1, 20) km. Use the man-
ual zoom capabilities of the matlab plot win-
dow to confirm that there is a second solution.
Where is the second solution located? Both lo-
cations have exactly the same time differences
of arrival and therefore cannot be distinguished
from 3-station measurements.

• Explore how ‘wide’ the multiple solution
domain is in x when y remains fixed at 20 km.
From the symmetry of the network, where else
in the x-y domain would you expect multiple
solutions to exist? Confirm this and make a
rough sketch of the mutiple-solution regions on
one of your hard copy plots.

• The solution ambiguity can be eliminated
by adding a fourth station to the network. Again,
keeping your 3-station program intact for com-
parison, do this to see if it is indeed true. (NOTE:
Be sure that the first 3 baseline pairs remain the
same when adding the 4th baseline.)

Analytic Solutions.

In the above, we solved the 2-dimensional time-
of-arrival (TOA) equations graphically by plot-
ting the hyperbolae corresponding to the dif-
ferences in the arrival times at successive pairs
(baselines) of measurement stations. In this man-
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Figure 6: 3-station hyperbolic solution.

ner we could use arrival time measurements at 3
stations to determine the three unknowns (x, y, t)
of the source location and time. We found that
in some regions of the x, y plane the hyperbo-
lae intersected at two locations, so that the so-
lution was not unique. Multiple solutions oc-
curred when the source was outside the network,
in the radial ‘shadow’ of each station.

Although the predicted TOA values differed
for the two possible source locations, the dif-

ferences in the arrival times at pairs of stations
turn out to be identical – hence the non-unique-
ness. The solution could be made unique by
adding a fourth station to generate an addi-
tional hyperbola that resolved the ambiguity.
The need for an extra measurement derives fun-
damentally from the non-linear nature of the
TOA equations, whose solutions can sometimes
be multi-valued.

In the following, we show how measurements
at four locations can be used to obtain an an-
alytic solution to the problem, in the form of
three linear equations in the three unknowns,
that can be solved by standard linear algebra
techniques. As before, the solution is unique.

Approach:

The basic way of solving a set of equations is by
eliminating variables. From before, the general

equation for the 2-dimensional case is

c(ti − t) =
√

(xi − x)2 + (yi − y)2 , (10)

where we now recognize that v = c, the speed
of light in air.

The hyperbolic solution is obtained by elim-
inating t as variable from the equations for a set
of two stations. Letting the 2nd station be sta-
tion j, t can be eliminated by differencing the
TOA equations for each station:

c(ti − t) =
√

(xi − x)2 + (yi − y)2

c(tj − t) =
√

(xj − x)2 + (yj − y)2 ,

giving

c(ti − tj) =
√

(xi − x)2 + (yi − y)2

−
√

(xj − x)2 + (yj − y)2 . (11)

The result is a single equation in two unknowns
(x, y) that is basically the equation for a hy-
perbola whose y-axis is the baseline. A second
equation can be obtained from the difference of
the third station measurement (station k) and
either the i or j station, from which x, y can be
determined. Given x and y, the source time t
can then be determined from (10) for any one
of the original measurements.

Another way of handling the equations is to
eliminate the terms in x2, y2 and t2, which lin-
earizes things. This can be done by writing (10)
in squared form,

c2(ti − t)2 = (xi − x)2 + (yi − y)2 , (12)

and differencing them for pairs of stations, as
above. The general result of differencing the ith

and jth equations is

(xi − xj)x + (yi − yj)y − c(ti − tj)ct = kij

where kij = (1/2)[(r2
i − r2

j ) − c2(t2i − t2j ))], and

r2
i = x2

i + y2
i etc. Differencing the equations

for four stations gives three equations that are
linear in the 3 unknowns, x, y, t. The equations

5



can be written in matrix form as

A~x = ~k , (13)

where A is the matrix of coefficients of the lin-
ear equations and ~x = x, y, t and ~k are column
vectors corresponding to the space-time source
location and kij values, respectively.

• Derive the general linear equation and use
the matrix capabilities of Matlab to implement
the solution of (13) for a 4-station network. Add
this to the 4-station version of your hyperbolic
program from the previous set of exercises, and
plot a cross-hair at the solution point in x, y
space.

• Print out the solution values for x, y, t and
evaluate the difference from the input values to
see how well the two agree.
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Starting programs

% Program to plot the hyperbola

% y^2/a^2 - x^2/b^2 = 1

% The hyperbolae are open up/down, so that x is the independent variable

% for plotting. (Using the form x^2/a^2 - y^2/b^2 = 1 requires that y be

% the independent variable, which is awkward programming-wise.)

clear % all variables

figure(1), hold off % start a new figure

set(gca,’FontSize’,14) % adjust fontsize

xmax = 30; ymax = 20;

x = linspace(-xmax,xmax,1001); % array of x values for plot (why 1001?)

a = 5; b = 3;

y = ???????????; % corresponding y values

plot(x,y)

hold on % add to current plot

plot(x,-y) % Plot other half of hyperbola

axis([-xmax xmax -ymax ymax]) % specify axis limits

xlabel(’x’)

ylabel(’y’)

title([’Hyperbola $y^2/a^2 - x^2/b^2 = 1$; $a$ = ’, num2str(a), ...

’, $b$ = ’, num2str(b),’; (WR 1/21/08)’],’Interpreter’,’latex’)

% Add axes

plot([0 0],[-ymax ymax],’k’) % y axis (black line - ’k’)

plot([-xmax xmax],[0 0],’k’) % x axis

Transform subroutine

function [xout,yout] = xfm1(xin,yin,theta,x_offset,y_offset)

% Program to rotate and translate x,y values from x",y" to x,y space.

% Written to plot hyperbolas for time of arrival code.

% theta value assumed to be in radians.

% rotation matrix

xfm = ????? ;

% make x,y values into a column vector

r_in = [xin; yin];

% rotate

r_out = xfm*r_in;

x = r_out(1,:); y = r_out(2,:);

xout = ????;

yout = ????;

7



1.2 Time of Arrival Location Error

Analysis

Introduction

In the preceeding section, it was assumed that
there were no errors in the measurements. The
locations are based on solving the Equation 1
for the three unknowns x, y, t based on the mea-
sured values xi, yi, ti. The errors in xi and yi

are usually small — with inexpensive GPS re-
ceivers, locations errors are less that one meter,
and with more expensive equipment, location
errors are less than a millimeter. The largest
source of error is in the measurments of the ar-
rival times ti. Using inexpensive GPS receivers,
the errors in ti are about 50 ns. In this section
we will explore how much errors in the arrival
time measurements affect the location accuracy
of a TOA system.

Normally Distributed Errors

Things such as timing errors are usually have
normal, or Gaussian, distributions. This means
that the probability distribution can be written
as:

f(x) =
h√
π

e−h2(x−m)2 (14)

Figure 7. shows a plot of f(x) for h = 1 and
m = 5.

The mean of a function is its average value,
which can be calculated as:

0 1 2 3 4 5 6 7 8 9 10
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x = 5, σ2 = 1

f(x) =
1√
2πσ

e
−

(x−x)2

2σ
2

Figure 7: Gaussian probability distribution.

x =

∫

∞

−∞

xf(x)dx (15)

In Exercise 5, you will show that the mean
of a normal distribution is x = m, so:

f(x) =
h√
π

e−h2(x−x)2 (16)

The variance σ2 of a function is the mean
value of the square of the difference between the
x and the mean value of x:

σ2 =

∫

∞

−∞

(x − x)2f(x)dx (17)

The variance shows how much of the distri-
bution f(x) is different than x. The standard
deviation is defined as the square root of the
variance, so the standard deviation is σ. In Ex-
ercise 5 you will show that

σ =
1√
2h

(18)

Thus, a Gaussian probability distribution can
be written:

f(x) =
1√
2πσ

e−(x−x)2/2σ2

(19)

When a calculation depends on a number
of variables which have errors, there is a way
to calculate the error in the final value. If the
output of a calculation is Q, and Q depends on
measured values a and b, then it can be shown
that

σ2
Q =

(

∂Q

∂a

)2

σ2
a +

(

∂Q

∂b

)2

σ2
b (20)

Exercise 5:

1. Show that x = m, and σ2 = 1/
√

2h. (Hint:
Integrate by using a change of variable
z = h(x−m). You then integrate by parts,
or look up the resulting integrals in a table
of integrals.)

2. Show that the standard deviation in the
time difference of arrival t2 − t1 is

8
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Figure 8: Error region inside of array.

σt1−t2 =
√

σ2
t1 + σ2

t2

3. Use the MATLAB function normrnd to
generate a large number of random vari-
ables with a mean value of 5 and a stan-
dard deviation of 1. Use the hist function
to show that the random variable distribu-
tion looks like that of Figure 7.

Graphical Esitimation of Errors

In Section 1, you plotted hyperbolae for a four-
station TOA network. The point where the
hyperbolae crossed was the location of the RF
source. By modifiying your program, it will be
easy to see how large the location errors will
be for a system due to the uncertainties in the
measurements of the arrival times. Call the
measurement uncertainty ∆t. From Exercise 5,
the uncertainty in the time difference is

√
2∆t.

If you replot the hyperbolae when the time-of-
arrival differences are this much smaller and this
much larger than the actual arrival times, you
will get a plot which looks like Figure 8 (using
∆t = 1µs):

If you blow up the region containing the
source, the plot look like Figure 9.

About 68% of the source locations should
lie inside the region which is common to all the
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4−station hyperbolic solution with 1 µs errors for x = 0 km,  y = 0 km 

Figure 9: Enlarged view of region of Figure 8. .

hyperbolae. Note that this region is about as
wide as it is long.

The above figures were generated for sources
inside the network. When the source is outside
the netork, the common region of the hyperbo-
lae look like Figure 10

The common region is much longer than it
is wide. The reason for this will be discussed
later.
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Figure 10: Error region outside of array.
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Figure 11: Monte Carlo simulation, 250 points.

Monte Carlo Error Analysis

The above graphical analysis shows where you
would expect a real system to calculate a source
locatation compared to the actual source loca-
tion. To check out whether this is what will hap-
pen, you can use a technique call Monte Carlo
analysis. To perform a Monte Carlo analysis,
you start with a source location, just as you
did before. You then add random timing er-
rors (using a computer program’s random value
function) to the actual time-of-arrival values,
and solve for the source location using the four-
station analytical method, using the modified
arrival times. You do this for a large number of
different samples (using different timing errors).
Figure 11 shows a Monte Carlo simulation of the
toa-determined location of a source at the origin
of the array, for a system with 1 µs errors.

Note that most, but not all, samples lie in-
side the area common to all hyperbolae. For a
Gaussian distribution, about 68% of the sam-
ples will lie within one standard deviation, so
about 68% of the points should lie within the
common area.

Exercise 6: Modify your programs from last
week to generate plots similary to those of Fig-
ures 8, 9, 10, and 11, for a time-of-arrival net-
work with a timing uncertainty of 100 ns. Also,
do a Monte Carlo simulation for a source out-
side of the array. In the Monte Carlo simula-

Source

r+cT1,0

D/2 S0

S2S1

y

x

r

Figure 12: Simple model for range determina-
tion.

tions, verify that about 68% of the simulated
source locations lie inside the common area of
the ellipse.

Simple Model for Errors Outside of Ar-

ray

When a source is inside of the array, the loca-
tion errors tend to be about the same size as
the timing errors (when the timing errors are
converted to distance). This is because, as a
source moves away from one station, it moves
closer to another, so a ∆d position change re-
sults in a 2∆d/c time-of-arrival distance. When
a source is outside the array, as it moves away
from one station, it moves away from all sta-
tions, so the time-of-arrival differences are much
smaller than when a source inside. The effect
can be illustrated with a simple model. Fig-
ure 12 shows how the range to a source (dis-
tance from the array to the source) is deter-
mined when the source is outside the array. The
range is determined by the difference in time
between the signal reaching Station 0 and the
signal reaching Station 1.

Figure 13 shows how the azimuth to a source
is determined when the source is outside the ar-
ray. The azimuth is determined by the differ-
ence in time between the signal reaching Sta-
tion 2 and the signal reaching Station 1.

Exercise 7: Using the simple model above,
show that range is

r ≃ D2

8cT1,0

10
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φ

T 2,1

y
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Figure 13: Simple model for azimuth determi-
nation.

and that the uncertainty in range is

∆r ≃ 8
( r

D

)2
c∆T1,0

Show that, for small φ, the error in azimuth
is

∆φ =

(

1

D

)

c∆T2,1

and the resulting uncertainty in the x direc-
tion is

∆y = r∆φ =
( r

D

)

c∆T2,1
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1.3 Determining the Best Location for

Multi-Station Time of Arrival Mea-

surements

Introduction

With a four-station network, one can find a lo-
cation from the three linear equations for time
differences (Equation 11). If there are no uncer-
tainties in the measurements, the location will
be exact, and will be the solution to the non-
linear equations

ti = t +

√

(xi − x)2 + (yi − y)2

c
(21)

If, however, there are uncertainties in the mea-
surements, the solution will fit the linear equa-
tions for time differences, but will not exactly
fit the non-linear equations. For example, sup-
pose we have the following station locations and
arrival times, where the arrival times have 40 ns
uncertainties:

Station x y ti

1 0 0 0.0000 µs

2 0 10 25.7830 µs

3 -10 -10 37.0099 µs

4 -10 10 9.2517 µs

The linear time difference of arrival equa-
tions give a location of x = 5.3936 km, y =
−2.5713 km, and t = −19.8973µs. However,
if we put these values of x, y and t into Equa-
tion 21, the calculated arrival times differ slightly
from the actual arrival times:

Station ti (measured) ti (calculated)

1 0.0000 µs 0.0335 µs

2 25.7830 µs 25.7976 µs

3 37.0099 µs 37.0216 µs

4 9.2517 µs 9.2745 µs

If there were more than four stations, how
could you find the position of a source? You
could find locations by taking different combi-
nations of three time differences of arrival (all

of which would give slightly different answers).
For example, with a five-station network, you
could use the three time differences of (t2 − t1),
(t3 − t1) and (t4 − t1) to find one location, then
use the three time differences of (t2−t1), (t3−t1)
and (t5−t1) to get another location. Other com-
binations would give yet other locations, which
could be averaged.

There is a better way to get a location. If
there were no errors in the measurements, the
equation

cti − ct −
√

(xi − x)2 + (yi − y)2 (22)

will equal zero for every station i. If there are er-
rors in the measurement of ti, then Equation 23
will be the error of the time measurement at
station i, which will be about the standard de-
viation σct of the error of the time measurement.
If we take the square of Equation 22, then the
value will always be positive, and will be about
the value of the variance σct

2 of the error in the
time measurement:

(

cti − ct −
√

(xi − x)2 + (yi − y)2
)2

(23)

If there are errors in the time measurement,
then it will be impossible to determine the true
source location and time. However, a “good”
location is one where the value of Equation 23 is
small for every station i. We define the quantity
χ2 as:

χ2 =
N

∑

i=1

(

cti − ct −
√

(xi − x)2 + (yi − y)2
)2

σct
2

(24)
then the “best” location will be the one which
makes χ2 the smallest. Because the values in
Equation 23 will be about the size of σct

2, χ2

will be on the order of unity for the “best” fit.
In a course in statistics, it can be shown the

quantity χν
2 (called the reduced χ2) has a value

of about 1 for the “best” fit:
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χν
2 =

N
∑

i=1

(

cti − ct −
√

(xi − x)2 + (yi − y)2
)2

(N − 3)σct
2

(25)
(The (N − 3) on the bottom is the number of
“degrees of freedom” in the measurement. We
need to solve for three quantities. so we need at
least three measurements. If we have a five sta-
tion network, then there are 5− 3 = 2 extra, or
redundant, measurements. It is said that there
are two degrees of freedom when we have five
measurements to solve for three unknowns.)

How can we use χν
2 to find the “best” val-

ues of x, y, and ct? Let’s take an example of
a system where we are trying to find one value
rather than three. For example, suppose you
are asked to find the coefficient of thermal ex-
pansion of a metal. You take a bar of metal
1 meter long, and measure its length as a func-
tion of temperature. The equation for length is
L = L0(1 + α(T − T0)), where L0 is the length
at a standard temperature T0, T is the temper-
ature at which the measurement is made, and
α is the coefficient of thermal expansion. Then
the reduced χν

2 for this experiment is:

χν
2 =

N
∑

i=1

(Li − LO(1 − α(T − Ti)))
2

(N − 1)σ2
(26)

where Li is the length of measurement number
i, Ti is the temperature of measurement i, and
σ2 is the variance in the measurement. (σ for
the numerator can be calculated using Equa-
tion 20.) The “best” α will be the one which
makes χν

2 smallest. If we plot χν
2 vs. α, we

might get a plot which looks something like Fig-
ure 14. To find the “best” α, we start with a
good guess (say, α = 20 × 10−6 K−1, a value
typical for a metal), and then we can develop
a search method to find the value of α which
makes χν

2 smallest. For the example of Fig-
ure 14, χν

2 will be 0.972 for the “best” α of
17.3 × 10−6 K−1

Suppose you had a series of measurements
where you were asked to find two parameters, α
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χ
ν

2

Figure 14: Plot of χν
2 vs. α.

and β. Then the reduced χ2 will depend on both
α and β, and a plot of χν

2 vs. α and β might
look something like Figure 15. A search over
both α and β to locate the smallest value of χν

2

will find the “best” values for these parameters.
Let’s go back to the case of a time-of-arrival

system. We want to find the “best” value for the
three parameters, x, y and ct from N time-of-
arrival measurements. Suppose we have a six-
station network. We can get an initial guess for
the parameters by solving the linear equation
for any three time differences of arrival. We
can find the best fit by searching around this
initial guess for the values of x, y and ct which
give the lowest value of χν

2. Here is a simple
(but inefficient) algorithm: make a grid around
the initial guess (for x, y and ct) which goes
one kilometer in each direction with 100 meter
steps. Find the location in this grid which gives
the smallest χν

2. Using this as a new guess,
search over a new grid which is 100 m x 100 m

Figure 15: Plot of χν
2 vs. α.
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x 100 m, with steps of 10 m. From the best
value in this grid, create a new 10 m x 10 m x
10 m grid with steps of 1 m. You can use the
value in this grid which gives the lowest χν

2 as
your “best” value. There is no need to take any
smaller grid, because with 40 ns timing errors,
we know that the closest we could possibly get
to the actual location is about 15 m.

In class, we will discuss more efficient al-
gorithms for finding the “best” values for x, y
and ct.

Exercise 8:

1. Download the files stations.loc and
toa_data.dat. The file stations.loc has
the x-y locations of eight TOA stations.
(The first column is the station number,
the second column is the x position in kilo-
meters, and the third column is the y posi-
tion in kilometers.) The file toa_data.dat
has time-of-arrival data for 1,000 sources.
The file consists of eight columns, with the
first column being the time (in seconds)
the signal arrives at Station 1, etc.

2. Write a program to generate linear solu-
tions to the TOA data. Pick one station
as a reference station, and use any three
other stations to get three time differences
of arrival. Generate a file
linear_solution.dat which has the x, y
and t values from the linear solutions.

3. Write a program to find the “best” fit to
the data; i.e. the locations which give the
smallest χν

2. Generate a file
least_squares_solution.datwhich has
the x, y, t and χν

2 values from the least
squares solution.

4. Use MATLAB to plot the x and y loca-
tions of the least-squares solutions.

5. The points should lie in an obvious pat-
tern. Comment on the size of the devia-
tion of the pattern from a smooth curve as
a function of the distance from the center
of the array.

6. Use MATLAB to plot a histogram of the
number of solutions vs. the value of χν

2.
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