1. A signal $x_a(t)$ is processed by the system shown in (a) below. The spectrum of $x_a(t)$ is shown in (b) below, where $\Omega_o = 2\pi(1000)$ rad/sec. The discrete-time system $H(z)$ in an ideal lowpass filter with frequency response

$$H(e^{j\omega}) = \begin{cases}
1, & |\omega| < \omega_c, \\
0, & \text{otherwise}
\end{cases}$$

(a) What is the minimum sampling frequency $F_S = 1/T$ such that no aliasing occurs in sampling the input?

(b) If $\omega_c = \pi/2$, what is the minimum sampling frequency such that $y_a(t) = x_a(t)$?

2. A continuous-time signal $x_a(t)$, with Fourier transform $X_a(j\Omega)$ shown below, is sampled with a sampling period $T = 2\pi/\Omega_0$ to form the sequence $x[n] = x_a(nT)$.

(a) Sketch the Fourier transform $X_a(e^{j\omega})$ for $|\omega| < \pi$.

(b) The signal $x[n]$ is to be transmitted across a digital channel. At the receiver, the original signal $x_a(t)$ must be recovered. Draw a block diagram of the recovery system and specify its characteristics. Assume ideal filters are available.

(c) In terms of Ω_0, for what range of values of T can $x_a(t)$ be recovered from $x[n]$?
3. In the system below, \(X_a(j\Omega)\) and \(H(e^{j\omega})\) are as shown. Note that \(\Omega_0 = 2\pi \times 5 \times 10^3\). Sketch and label the Fourier transform of \(y_a(t)\) for each of the following cases:

\[\begin{align*}
(\text{a}) & \quad 1/T_1 = 1/T_2 = 10^4 \\
(\text{b}) & \quad 1/T_1 = 1/T_2 = 2 \times 10^4 \\
(\text{c}) & \quad 1/T_1 = 2 \times 10^4, \quad 1/T_2 = 10^4 \\
(\text{d}) & \quad 1/T_1 = 10^4, \quad 1/T_2 = 2 \times 10^4
\end{align*}\]

4. A Butterworth analog lowpass filter is to be designed with the following specifications:

\[
F_P = 2 \text{ kHz} \quad R_P = 0.5 \text{ dB} \\
F_S = 8 \text{ kHz} \quad R_S = 30 \text{ dB}
\]

(a) What order filter \(N\) is required?
(b) What 3-dB frequency \(\Omega_c\) will you use?
(c) Find the location of the poles of the filter in the \(s\)-domain.
(d) Write down the transfer function \(H(s)\) of the filter. Use second-order sections in the denominator so all coefficients are real.
(e) Plot the frequency response of the filter using the MATLAB \texttt{freqs} function. Verify that the filter meets the specifications.
(f) Check your answers to (a), (b) and (c) using the MATLAB \texttt{buttord} and \texttt{butter} functions.

5. A Butterworth analog high-pass filter is to be designed with the following specifications:

\[
F_P = 8 \text{ kHz} \quad R_P = 0.5 \text{ dB} \\
F_S = 2 \text{ kHz} \quad R_S = 30 \text{ dB}
\]

(a) Using \(\Omega_p = 1\) find the specifications of the lowpass transfer function \(H_{LP}(s)\) which can be used as a prototype to design the highpass filter.
(b) What order filter \(N\) is required?
(c) What 3-dB frequency \(\Omega_c\) will you use?
(d) Find the location of the poles of the lowpass prototype filter in the s-domain.

(e) Write down the transfer function $H_{LP}(s)$ of the filter. Use second-order sections in the denominator so all coefficients are real.

(f) Use Equation 5.59 of the Text to find $H_{HP}(s)$.

(g) Plot the frequency response of the filter using the MATLAB `freqs` function. Verify that the filter meets the specifications.

6. A Butterworth bandpass filter is to be designed with the following specifications:

\[
F_{P1} = 20 \text{ kHz} \quad F_{P2} = 45 \text{ kHz} \quad R_P = 0.5 \text{ dB}
\]
\[
F_{S1} = 10 \text{ kHz} \quad F_{S2} = 60 \text{ kHz} \quad R_S = 40 \text{ dB}
\]

(a) Find Ω_0, the center frequency of the bandpass filter.

(b) Using $\Omega_p = 1$ find the specifications of the lowpass transfer function $H_{LP}(s)$ which can be used as a prototype to design the bandpass filter.

(c) What order filter N is required?

(d) What 3-dB frequency Ω_c will you use?

(e) Find the location of the poles of the lowpass prototype filter in the s-domain.

(f) Find the locations of the poles and zeros of the bandpass filter from part (e) and Equation 5.61 of the Text.