EE 451

IIR Filter Design

One way to design IIR filters is by use of the bilinear transformation. To design a low-pass IIR filter, transform a low-pass continuous-time filter to a discrete-time filter using the transformation

$$s = \frac{1 - z^{-1}}{1 + z^{-1}}$$

To design another type of filter (high-pass, band-pass, or band-stop) another step is needed. There are several ways to do this. One of the simplest is to find different transformations which will map a low-pass continuous-time filter in one of these other types of discrete-time filters. Here are a set of transformations which will do that.

	LP	HP	BP	BS
s	$\frac{1-z^{-1}}{1+z^{-1}}$	$\frac{1+z^{-1}}{1-z^{-1}}$	$\frac{1 - 2cz^{-1} + z^{-2}}{1 - z^{-2}}$	$\frac{1-z^{-2}}{1-2cz^{-1}+z^{-2}}$
z	$\frac{1+s}{1-s}$	$\frac{s+1}{s-1}$	$\frac{-c \pm \sqrt{c^2 + s^2 - 1}}{s - 1}$	$\frac{c \pm \sqrt{c^2 + \left(\frac{1}{s}\right)^2 - 1}}{1 - \frac{1}{s}}$
Ω	$\tan(\frac{\omega}{2})$	$-\cot(\frac{\omega}{2})$	$rac{c - \cos(\omega)}{\sin(\omega)}$	$rac{\sin(\omega)}{c-\cos(\omega)}$
c			$\frac{\sin(\omega_{pl} + \omega_{ph})}{\sin(\omega_{pl}) + \sin(\omega_{ph})}$	$\frac{\sin(\omega_{pl} + \omega_{ph})}{\sin(\omega_{pl}) + \sin(\omega_{ph})}$
ω_1	0	π	$\cos^{-1}(c)$	$0 \text{ or } \pi$

A filter is usually specified by passband and stopband frequencies ω_{pass} and ω_{stop} , and by passband ripple R_{pass} , and stopband attenuation R_{stop} . Band-pass and band-stop filters have low and high passband and stopband frequencies.

To design a discrete-time IIR filter, do the following:

- 1. Pre-warp the discrete-time frequencies to continuous-time frequencies using the row labeled Ω :
 - (a) If low-pass or high-pass, transform ω_{pass} and ω_{stop} to Ω_{pass} and Ω_{stop} .
 - (b) If band-pass or band-stop, find c. Then transform ω_{pl} , ω_{ph} , ω_{sl} and ω_{sh} to Ω_{pl} , Ω_{ph} , Ω_{sl} and Ω_{sh} . Let $\Omega_{pass} = |\Omega_{pl}|$, and let $\Omega_{stop} = \min(|\Omega_{sl}|, |\Omega_{sh}|)$

2. Design a continuous time low-pass filter using Ω_{pass} and Ω_{stop} from step 1. For Butterworth design, find N and Ω_c using the formulas

$$\epsilon = \sqrt{rac{2\delta_1 - {\delta_1}^2}{(1 - \delta_1)^2}}$$
 $\delta = \sqrt{rac{1 - {\delta_2}^2}{\delta_2^2}}$ $N = rac{\log{(\epsilon/\delta)}}{\log{(\Omega_{pass}/\Omega_{stop})}}$ $\Omega_c = \Omega_{stop}(\delta)^{-1/N}$

or

$$\Omega_c = \Omega_{pass} \left(\epsilon \right)^{-1/N}$$

where $\delta_1 = 1 - 10^{-R_{pass}/20}$, and $\delta_2 = 10^{-R_{stop}/20}$. Since N must be an integer, you must round N up to an integer value.

This filter will have N poles at

$$s_k = \Omega_c e^{j(\frac{\pi}{2})} e^{j\pi(\frac{2k+1}{2N})}, \quad k = 0, 1, ..., N-1$$

and N zeros at infinity.

- 3. Transform the continuous-time filter to a discrete-time filter using one of the following two methods:
 - (a) Replace every s in the continuous-time transfer function as specified with the row labeled s. Do lots of algebra to get it into a usable form.
 - (b) Map s-plane poles and zeros to corresponding z-plane poles and zeros using the equations in the row labeled z. (For band-pass and band-stop filters, every s-plane pole maps to two z-plane poles, and every s-pland zero maps to two z-plane zeros.) Don't forget s-plane zeros at infinity. For low-pass filters, an s-plane zero at infinity maps into a z-plane zero at -1. For high-pass filters, an s-plane zero at infinity maps into a z-plane zero at +1. For band-pass filters, an s-plane zero at infinity maps into an z-plane zero at +1 and an z-plane zero at -1. For band-stop filters, and s-plane zero at infinity maps into z-plane zeros at $e^{\pm j\omega_c}$ where $\omega_c = \cos^{-1}(c)$.

Then find G by

$$G = \left| rac{\prod_{i=1}^{N} \left(e^{j\omega_1} - p_i
ight)}{\prod_{i=1}^{N} \left(e^{j\omega_1} - z_i
ight)}
ight|$$

where ω_1 is the frequency where $|H(\omega_1)| = 1$.

The discrete-time transfer function is:

$$H(z) = G \frac{\prod_{i=1}^{N} (z - z_i)}{\prod_{i=1}^{N} (z - p_i)}$$

Using MATLAB, steps 1 and 2 can be done with the function buttord. The entire design process can be done with the function butter.