EE 451

Solution of Difference Equations in the Time Domain

The difference equation

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

(where $a_o = 1$) has the solution

$$y[n] = \underbrace{\{C_1 \lambda_1^n + \dots + C_N \lambda_N^n\} u[n] + D_0 \delta[n] + \dots + D_{M-N-1} \delta[n - (M - N - 1)]}_{y_{tr}[n]} + \underbrace{y_p[n]}_{y_{ss}[n]}$$
(1)

where the λ_k 's are the roots of the characteristic polynomial of the system:

$$\lambda^N + a_1 \lambda^{N-1} + \dots + a_{N-1} \lambda + a_N = 0.$$

(For repeated roots, use λ_k^n , $n\lambda_k^n$, $n^2\lambda_k^n$, etc. For example, if $\lambda_1 = \lambda_2$, you would use $C_1\lambda_1^n + C_2n\lambda_1^n$ instead of $C_1\lambda_1^n + C_2\lambda_1^n$.)

 $y_p[n]$ is the particular (steay-state) solution which depends on the input:

x[n]	$y_p[n]$
Au[n]	Ku[n]
$A\alpha^n u[n]$	$K lpha^n u[n]$
$A\cos[\omega_o n] + B\sin[\omega_o n]$	$K_1 \cos[\omega_o n] + K_2 \sin[\omega_o n]$

If the characteristic polynomial has a root at the value of an input exponential (e.g., $\lambda_1 = \frac{1}{2}$ and $x[n] = \left(\frac{1}{2}\right)^n$) you would use $Kn\lambda_k^n$ for $y_p[n]$ (e.g., $y_p[n] = Kn\left(\frac{1}{2}\right)^n$).

There are $M - N D_i$'s. If $M \leq N$ there are no D_i 's.

To find the impulse response, there is no $y_p[n]$, and there are M - N + 1 D_i 's. If M < N there are no D_i 's for the impulse response.

Solve for the unknowns by finding y[0], y[1], y[2], \cdots until you get as many equations as you have unknowns. Solve these equations for the unknowns.

You can solve the difference equation for the case x[n] = 0, subject to the initial conditions of the system. This is the *natural response* or *zero-input response*, $y_{zi}[n]$, of the system. You can further solve for the case y[n] = 0 for n < 0 for the actual input x[n]. This is the *forced response* or *zero-state response*, $y_{zs}[n]$, of the system. The total response is the sum of the two: $y[n] = y_{zi}[n] + y_{zs}[n]$.

A system is *BIBO stable* if, for every bounded input, the output is bounded. If the input x[n] is bounded, then the particular solution $y_p[n]$ will be bounded. Thus, the only possible unbounded terms in Eq. (1) are the λ_k^n 's. These terms are bounded $(\lambda_k^n \to 0 \text{ as } n \to \infty)$ if $|\lambda_k| < 1$. Hence, the system is BIBO stable if $|\lambda_k| < 1$ for all the k's. $(\lambda_k^n \text{ doesn't blow up if } |\lambda_k| = 1$. However, if $|\lambda_k| = 1$, the input $x[n] = \lambda_k^n$ will produce the output $y[n] = C_1 \lambda_k^n + Kn\lambda_k^n$, and the $Kn\lambda_k^n$ term will blow up as $n \to \infty$.)