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Solution of Di�erence Equations in the Time Domain

The di�erence equation
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where the �k's are the roots of the characteristic polynomaial of the system:
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yp[n] is the particular (steay-state) solution which depends on the input:

x[n] yp[n]

Au[n] Ku[n]
A�nu[n] K�nu[n]

A cos[!on] +B sin[!on] K1 cos[!on] +K2 sin[!on]

If the characteristic polynomial has a root at the value of an input exponential (e.g., �1 = 1
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There are M �N Di's. If M � N there are no Di's.

To �nd the impulse response, there is no yp[n], and there are M �N +1 Di's. If M < N there
are no Di's for the impulse response.

Solve for the unknowns by �nding y[0], y[1], y[2], � � � until you get as many equations as you
have unknowns. Solve these equations for the unknowns.

You can solve the di�erence equation for the case x[n] = 0, subject to the initial conditions
of the system. This is the natural response or zero-input response, yzi[n], of the system. You
can further solve for the case y[n] = 0 for n < 0 for the actual input x[n]. This is the forced

response or zero-state response, yzs[n], of the system. The total response is the sum of the two:
y[n] = yzi[n] + yzs[n].

A system is BIBO stable if, for every bounded input, the output is bounded. If the input x[n]
is bounded, then the particular solution yp[n] will be bounded. Thus, the only possible unbounded
terms in Eq. (1) are the �nk 's. These terms are bounded (�nk ! 0 as n ! 1) if j�kj < 1. Hence,
the system is BIBO stable if j�kj < 1 for all the k's. (�nk doesn't blow up if j�kj = 1. However, if
j�kj = 1, the input x[n] = �nk will produce the output y[n] = C1�

n
k +Kn�nk , and the Kn�nk term

will blow up as n!1.)

1


