Stratospheric Predictability and the Arctic Polar-night Jet Oscillation

Peter Hitchcock¹, Ted Shepherd² University of Toronto ¹Now at Cambridge ²Now at Reading

> Gloria Manney JPL, NMT, Now at NWRA

NAM Decorrelation Timescales

Baldwin et al. Science 2003

Can we exploit the longer stratospheric timescales to improve predictability of the troposphere?

Sometimes Yes...

Zonal wind, 60 N Winter 2003-2004

Ensemble forecast of winds, begun btw. 27 Dec and 1 Jan 2003

Kuroda, GRL 2008

... but sometimes No Anomalous zonal wind (55-65N, Obs) 10 30 Zonal wind, 60 N 100 Winter 2002-2003 200 500 850 1JAN 2003 16 JAN 16FEB 1MAR 16MAR 1APR 1DEC 2002 16DEC 1FEB Forecasted anomalous zonal wind 10 **Ensemble forecast** 30 -10of winds, begun btw. -527 Dec and 1 Jan 2002 100 200 -500 Kuroda, GRL 2008 850 · 1JAN 2003 16DEC 16 JAN 1FEB 16FEB 1MAR 16MAR 1APR 1DEC 2002

Questions

- From where does this predictability arise?
- Why does the enhanced skill seem to arise only after particular sudden warmings?

Outline

- PJO Events
 - definition and characterization
 - zonal mean dynamics

Hitchcock, Shepherd and Manney, J. Clim. (sub.)

Hitchcock and Shepherd, JAS (sub.)

Conclusions

Datasets

- Observations
 - Aura MLS: 300 to 0.001 hPa, 2004-2011
- Reanalyses
 - ERA40: 1000 to 1 hPa, 1957-2002
 - MERRA: 1000 to 0.1 hPa, 1979-2011
- Model
 - Canadian Middle Atmosphere Model (CMAM)
 - 1000 to 0.001 hPa, 1960-2100 (x3)
 - Time-dependent GHGs and ODSs
 - Interactive strat. chemistry, specified SSTs
 - REF2 Ensemble from CCMVal 1

Polar cap T' from MLS Satellite Obs. (10 K interval)

CMAM Sudden Warmings

- Sudden warming occurrence rates agree with observational records to within sampling uncertainty
- Fraction of splits and displacements also reproduced

CMAM PJO Occurrence

- PJO occurrence frequency and average duration also well reproduced
- No sign of a trend in either

Duration vs. depth of warming

Duration vs. depth of warming

Duration vs. depth of warming

Persistence of stratospheric anomaly is correlated with the depth to which the initial warming descends

PJO events and vortex splits

TABLE 3. PJO occurrence following sudden warmings

	Fraction followed by PJO events		Duration of PJO events (days)	
Event type	CMAM	Reanalyses	CMAM	Reanalyses
all	0.40 ± 0.06	0.43 ± 0.16	65 ± 4	72 ± 10
split	0.56 ± 0.12	0.6 ± 0.3	62 ± 7	71 ± 15
$\operatorname{displacement}$	0.36 ± 0.06	0.3 ± 0.2	66 ± 5	75 ± 20

PJO events more likely following splits...

...but if they occur, they are no more persistent!

Tropospheric impact

Conclusions Part I

- ~50% of sudden warmings are followed by PJO events, or extended recovery periods
- Their timescale is related to the depth to which the vortex is disrupted
- They are more likely to follow splits
- Wave driving is strongly suppressed during the recovery phase
- The tropospheric jets shift more persistently equatorwards during PJO events

PJO event composites

Where does this persistence come from?

Time dependence of zonal mean T

 $\overline{T}_t = F(\nabla \cdot \tilde{F}, \overline{\psi}^*, Q)$ Depends on EP Flux convergence, residual circulation, radiative heating

 $\overline{\psi}^* = m{\psi} igl(
abla \cdot ilde{m{ extsf{F}}}, Q igr)$ Eliassen 1951; Plumb 1982

$$\overline{T}_t = F(\nabla \cdot \widetilde{F}, \Psi(\nabla \cdot \widetilde{F}, Q), Q)$$

 $\equiv F'(\nabla \cdot \tilde{F}, Q)$ Depends on EP Flux convergence, radiative heating

 $Q = Q_c - lpha \overline{T}'$ Rodgers and Walshaw 1966; Hitchcock et al. 2010

$$\overline{T}_t = F'(\nabla \cdot \widetilde{F}, Q_c - lpha \overline{T}')$$
 Haynes et al. 1991
 $\overline{T}' \equiv F''(\nabla \cdot \widetilde{F})$ Depends on EP Flux convergence alone
 $= F''(\mathscr{F}_p) + F''(\mathscr{F}_s) + \dots$

The response can thus be decomposed

Adjustment to the DC limit

$$w_{\alpha} = \alpha H_{R}^{2}/H$$

$$\kappa_{\alpha} = \alpha H_{R}^{2}(1 + H_{R}^{2}/H^{2})$$

Haynes et al. 1991

Instantaneously, the residual circulation is driven by the torques and the diabatic heating:

$$\mathcal{L}\overline{w}_{QG}^* = \mathcal{L}_{\mathcal{F}}\mathcal{F} + \mathcal{L}_QQ$$

In steady state, the residual circulation is given by downward control:

$$\overline{w}_{DC}^* = \frac{1}{\rho_0 a \cos \phi} \int_z^\infty \frac{\partial}{\partial \phi} \left(\frac{\rho_0 \cos \phi \mathcal{F}}{f} \right) dz$$

The adjustment to a switch-on forcing at a given level 'burrows' downward, as the temperatures (and thus Q) adjusts; the timescale for this to occur below the forcing is given by:

$$t_{\alpha}(\Delta z) \sim \frac{\Delta z H}{\alpha {H_R}^2}$$

CMAM case study

Subsequent shut-off

Pure Radiative damping

'Fixed Dynamical Heating' with the dynamical heating set to 0

Radiative damping with Eliassen adjustment

Diabatic heating itself induces a (transient) residual circulation:

$$\frac{\partial T'}{\partial t} = Q_c - \frac{\partial T_c}{\partial t} - \alpha T' - S \overline{w}_{QG}^*$$

Persistence of lower stratospheric anomaly is radiative, with an enhancement due to the Eliassen adjustment to the radiative heating

Descent of the Stratopause

Gravity wave flux strongly controlled by lower stratospheric winds

Conclusions Part 2

- Suppression of planetary waves in the vortex leads to robustly similar evolution during all PJO events -- why?
- Radiative processes are easier to predict than wave-driven processes
- Enhancement of predictability arises from the suppression of waves