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[1] The location accuracy of the New Mexico Tech Lightning Mapping Array (LMA) has
been investigated experimentally using sounding balloon measurements, airplane tracks,
and observations of distant storms. We have also developed simple geometric models for
estimating the location uncertainty of sources both over and outside the network. The
model results are found to be a good estimator of the observed errors and also agree with
covariance estimates of the location uncertainties obtained from the least squares
solution technique. Sources over the network are located with an uncertainty of 6–12 m
rms in the horizontal and 20–30 m rms in the vertical. This corresponds well with
the uncertainties of the arrival time measurements, determined from the distribution of
chi-square values to be 40–50 ns rms.Outside the network the location uncertainties increase
with distance. The geometric model shows that the range and altitude errors increase as the
range squared, r2,while the azimuthal error increases linearlywith r. For the 13 station, 70 km
diameter network deployed during STEPS the range and height errors of distant sources
were comparable to each other, while the azimuthal errors weremuch smaller. The difference
in the range and azimuth errors causes distant storms to be elongated radially in plan views of
the observations. The overall results are shown to agree well with hyperbolic formulations
of time of arrival measurements [e.g., Proctor, 1971]. Two appendices describe (1) the
basic operation of the LMAand the detailedmanner inwhich itsmeasurements are processed
and (2) the effect of systematic errors on lightning observations. The latter provides an
alternative explanation for the systematic height errors found by Boccippio et al. [2001] in
distant storm data from the Lightning Detection and Ranging system at Kennedy Space
Center. INDEX TERMS: 3304 Meteorology and Atmospheric Dynamics: Atmospheric electricity; 3324
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1. Introduction

[2] The New Mexico Tech Lightning Mapping Array
(LMA) locates the sources of impulsive radio frequency
radiation produced by lightning flashes in three spatial
dimensions and time [Rison et al., 1999; Krehbiel et al.,
2000]. It does so by accurately measuring the arrival times of
radiation events at a network of ground-based measurement
stations spread over an area typically 60 km in diameter.
The signals are received in an unused very high frequency
(VHF) television band, usually channel 3 (60–66 MHz).
The accuracy of the locations depends on the uncertainty of
the arrival time measurements and on the number and

positions of the stations used to obtain each solution. The
arrival times are measured independently at each station
using an accurate time base provided by a GPS receiver.
In this paper we investigate the accuracy of the source
locations both experimentally and theoretically and show
how the experimentally observed errors are explained by the
timing uncertainties and array geometry. The results can be
used to design and optimize an array that meets a given set
of requirements.
[3] The use of time of arrival (TOA) measurements in

lightning studies was pioneered by D. E. Proctor in South
Africa [e.g., Proctor, 1971, 1981; Proctor et al., 1988].
Proctor utilized a network of five stations arrayed along two
nearly perpendicular baselines to study the detailed break-
down of individual lightning discharges. The network, in
the approximate form of a cross, was about 30 km in east–
west (E–W) extent and 40 km in north–south (N–S)
extent. The analog receiver outputs from each of the
outlying stations were telemetered to the central station,
where they were recorded and manually processed to
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identify the times of common events. The arrival time
differences were analyzed using hyperbolic formulations
to obtain the source locations. In his initial paper on the
system, Proctor [1971] discussed the geometric interpreta-
tion of the solutions and the effect of the network geometry
on the location accuracy. The TOA measurements were
made with 5 MHz bandwidth receivers at a center frequency
of 300 MHz and had estimated timing errors Dt of about
70 ns rms. From this the horizontal location accuracy was
estimated by Proctor to be about cDt ’ 20 m for sources
within the boundaries of the network. Owing to the way in
which the hyperbolic surfaces intersected, the vertical errors
were larger and were estimated to vary from 100 m up to
several hundred meters or a kilometer, depending on the
altitude and horizontal location of the source relative to the
measurement stations.
[4] Using Proctor’s approach, Lennon [1975] imple-

mented a seven station network for monitoring lightning
over and around Kennedy Space Center (KSC), Florida.
Called the Lightning Detection and Ranging (LDAR) sys-
tem, the network consisted of an approximately circular
array of six measurement stations about 16 km in diameter
concentric with a central seventh station. Conceptually and
for processing purposes, the network was considered to
consist of two Y-shaped arrays, one upright and the other
upside down, each consisting of three outlying stations and
the central station. Logarithmically detected RF signals
from the outlying stations were telemetered in analog form
to the central station, as in Proctor’s system, but were then
digitized with 50 ns time resolution and were automatically
processed to obtain the lightning sources in real time. The
system typically located several tens of events per lightning
flash [e.g., Krehbiel, 1981]. In addition to being important
for operations at Kennedy Space Center (KSC) and the
Cape Canaveral Air Force Station, the LDAR system
provided valuable information on the storms during the
Thunderstorm Research International Program (TRIP 76–
78) [e.g., Lhermitte and Krehbiel, 1979].
[5] The accuracy of the LDAR system was studied by

Poehler [1977], who estimated the location uncertainties
over the network from geometric dilution of precision
formulations for an ideal Y-shaped array and performed
Monte Carlo simulations of the location accuracy outside
the network. Assuming 20 ns rms timing errors, the
results indicated 7–11 m rms uncertainties in plan locations
over the network and an order of magnitude larger (72–
100 m rms) errors in the vertical for sources at 8 km
altitude. Outside the network the location uncertainties were
found to be much greater in range than in azimuth; the
location uncertainties were considered to be acceptable to
32 km range (500 m rms error in range and 250 m error in
altitude). Poehler confirmed the error results by analyzing
the scatter in an airplane track that (for then unknown
reasons) was detected by the LDAR system and by analyzing
system calibration data provided by spark generators located
on the top of two buildings at KSC.
[6] An improved, second-generation version of the

LDAR system was developed by Lennon and coworkers
at Kennedy Space Center in the early 1990s [Maier et al.,
1995]. Observations from the new LDAR system
were studied statistically by Boccippio et al. [2001] for a
19 month period during 1997–1998, including the two

summer convective seasons. The distribution of located
lightning sources was determined as a function of height
and range out to 300 km distance from the network. The
areal density of sources was found to decrease exponentially
with range, inconsistent with and more rapidly than would
be predicted by signal detectability (i.e., signal-to-noise
ratio) considerations. Also, the height of the maximum
lightning activity was found to increase systematically with
range, from a physically correct value of 9 km altitude over
and close to the network to a physically incorrect value
of about 20 km altitude at 300 km range. The authors
summarized results from other TOA systems, including
early results from the Lightning Mapping Array, which
indicated that the range errors outside the network increased
as the range squared (r2). From a Monte Carlo analysis of
their analytic formulations, Boccippio et al. inferred that the
systematic height increase with distance resulted from the
system having unexpectedly large range errors at large
distances. The sources at large range were thought to be
dominated by overranged sources in storms at intermediate
ranges, which would appear to be at higher altitudes.
[7] The problem of retrieving source locations from TOA

measurements has also been studied by Koshak and
Solakiewicz [1996] (hereinafter referred to as KS96) and
by Koshak et al. [2004]. KS96 developed an alternative
formulation to the nonlinear hyperbolic equations used by
Proctor and Lennon for retrieving the source locations.
Their formulation recast the TOA equations in a linear form
and enabled solutions and error analyses to be obtained
analytically. Koshak et al. [2004] applied the results of
KS96 to develop a more complete source retrieval algorithm
and used it in a theoretical study of the errors in an LMA
being operated in north Alabama [e.g., Goodman, 2003].
The retrieval algorithm is basically the same as that devel-
oped to process LMA observations (Appendix A).
[8] In the present study we examine the accuracy of the

Lightning Mapping Array both experimentally and theoret-
ically. We separate the problem into two regimes by
investigating the location uncertainties first over or near
the array and then outside the array. In each regime we
develop simple geometric models which describe the basic
way in which the measurements determine the source
locations and give the functional behavior of the location
accuracies. The model results are compared with experi-
mentally observed errors from a sounding balloon and from
aircraft tracks and with the results of linearized covariance
analyses from the solution technique. The results confirm
and extend many of the findings of the previous studies,
correct some other findings, and elaborate on several
practical aspects of the observations. The models provide
simple analytic formulations for the errors that are in good
agreement with the experimental results and show, for
example, why the range errors increase as r2. The effect
of systematic errors is discussed in Appendix B, which
includes an alternative explanation for the systematic height
increase found by Boccippio et al. [2001] in the LDAR
observations.
[9] The data of this study were obtained while the LMA

was being operated in the Severe Thunderstorm Electrifi-
cation and Precipitation Study (STEPS 2000) in northwest-
ern Kansas and eastern Colorado [Lang et al., 2004; W. D.
Rust et al., Inverted-polarity electrical structures in thunder-
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storms in the Severe Thunderstorm Electrification and
Precipitation Study (STEPS), submitted to Atmospheric
Research, 2003]. A brief description of the mapping system
and of the processing approach used to obtain the source
locations is given in Appendix A.

2. Lightning Example

[10] Figure 1 shows an example of a lightning discharge
observed by the LMA during STEPS that illustrates the
spatial resolution that the system is able to obtain. The flash
was a negative polarity cloud-to-ground (CG) discharge that

occurred over the northern part of the network and was
accurately located by the measurements. The discharge
propagated over a large horizontal distance (40 km) through
its parent storm; in the process the breakdown channels
developed a fine dendritic structure that was well resolved
by the mapping system. More than 5000 sources were
located during the 2 s duration of the flash.
[11] Data from the National Lightning Detection Network

(NLDN) [Cummins et al., 1998] show that the flash was a
multiple-stroke CG discharge that lowered negative charge
to ground. The top panel of the figure shows the altitude of
the sources versus time and indicates that the initial stepped

Figure 1. Radiation sources for a negative polarity cloud-to-ground discharge that occurred over the
northern end of the STEPS network at 2223:35–37 UTC on 22 July 2000. The colors indicate time
progression, and the different panels show the evolution of the flash in (top) height-time, (bottom left)
plan view, and in (middle left) east–west (E–W) and (bottom right) north–south (N–S) vertical
projections. Also shown is a histogram of the source heights. The triangles indicate negative ground
strike times and locations from the National Lightning Detection Network (NLDN). The squares in the
plan view indicate the location of measurement stations, and the vertical line denotes the Colorado-
Kansas state border.
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leader initiated between 8 and 9 km altitude, after about
50 ms of preliminary breakdown, and required about 60 ms
to reach ground. (All altitudes in this study are GPS
altitudes, which are within about 10 m of mean sea level.)
The NLDN observed the initial stroke and two subsequent
strokes at the times and locations indicated by the triangles
in the figure. Similar but less extensive horizontal flashes
were studied by Krehbiel et al. [1979], who showed that
sources of charge for successive strokes developed horizon-
tally away from the flash initiation region.
[12] The colors of the sources indicate time progression;

when viewed in time animation, the flash steadily devel-
oped outward along the various branches, with multiple
branches extending simultaneously in time. The TOA
technique and the processing are readily able to sort out
the resulting ‘‘back and forth’’ activity of the different
branches. The subsequent strokes were initiated by fast dart
leaders, for which only a few sources were located by the
mapping system. Such leaders typically last only a few
hundred microseconds and therefore are not well sampled
by the 80 or 100 ms measurement windows with which the
LMA usually operates. The lack of a second stepped leader
in the LMA data indicates that all strokes went down a
single channel to ground. A final breakdown event at 37.4 s
near the end of the flash (shown in red) traversed the
complete horizontal extent of the discharge and progressed
downward toward ground. It would appear to have initiated
another stroke but most likely was an attempted leader of
the type reported by Shao et al. [1995].
[13] Figure 2 shows an expanded view of a 10-km-wide

section of the channels to indicate their detailed structure.
The dots used in Figure 2 have a size of about 100 m,
which, as will be seen, is comparable to or larger than the

plan location accuracy with which the system is able to
locate impulsive events. While many of the individual
channels are well resolved, the lateral spread of the sources
along the channels is comparable to or slightly larger than
the dot sizes. This is indicative of unresolved additional
structure in the breakdown channels and/or of location
uncertainties introduced by the sources not being completely
impulsive. The late-stage breakdown (red sources) retraced
the earlier channels with good accuracy.
[14] In addition to fine-scale ‘‘noisiness’’ in the channel

structure, a relatively small number of sources have kilo-
meter or larger errors. These are seen in the vertical
projection panels of Figure 1 as outlying points both above
and below the horizontal channels and alongside the chan-
nel to ground. The outlying points can be identified as being
incorrect because of the limited vertical extent of the in-
cloud breakdown and the relatively localized and un-
branched initial leader channel. As discussed in section 3,
the outlying points result from the occasional incorporation
of random local noise events at a station into the set of data
values used to obtain the solutions. For analyses of indi-
vidual flashes, outlying points can be removed by manually
editing the observations and/or by tightening goodness of fit
restrictions. Sections 3–6 present detailed analyses of the
accuracy of the mapping system for sources over and
outside the network.

3. Location Accuracy Over the Network

[15] We first investigate the location errors for sources
over or near the network of measurement stations. The
errors were determined experimentally by using the map-
ping array to locate a sounding balloon that carried a GPS
receiver and a VHF transmitter. The results are found to be
in good agreement with error estimates from a simple
geometric model and with linearized estimates of the
location uncertainties obtained from the least squares solu-
tion technique.
[16] Several experiments were conducted during STEPS

in which the LMA was used to track sounding balloons
carrying a pulsed VHF transmitter. The transmitter broad-
cast short-duration (125 ns) pulses of 63 MHz radiation,
which were located by the LMA as the balloon ascended.
One sounding balloon carried a handheld GPS receiver
(Magellan GPS 310) that determined the balloon location
every second. A serial bit stream containing the GPS
location data was transmitted to the ground by modulating
the time between transmitted pulses. The pulse transmission
rate averaged about 140 s�1, and more than 500,000 pulses
were located during the �1 hour flight. Details of the
modulation and decoding technique are presented in
Appendix D.
[17] Figure 3 shows the flight path of the GPS sounding

balloon as determined by the mapping system. Figure 3 also
shows the network of measurement stations used during
STEPS. Thirteen stations were deployed over an area about
80 km in E–W extent and 60 km in N–S extent. The
balloon was launched near the center of the network and
ascended to about 24 km altitude. In the process it drifted
eastward to slightly beyond the network’s northeastern
edge. The rubber balloon burst at 24 km altitude, after
which the instrument rapidly descended to about 19 km

Figure 2. Expanded plan view of the dendritic structure of
the flash of Figure 1, showing the level of detail in the
observations and the accuracy with which several break-
down events near the end of the flash retrace the earlier
channels (red sources).

D14207 THOMAS ET AL.: LMA ACCURACY

4 of 34

D14207



altitude before the transmitter ceased functioning. The flight
took place between 1800 and 1900 LT on 9 July in clear-
weather conditions with no nearby storms.
[18] Figure 4 shows successively expanded views of the

LMA balloon track (red dots) and the onboard GPS
locations (central black line). The data are shown in E–
W vertical projection. The expanded view in the lower
right panel shows that most of the LMA source locations
were within ±50 m of the GPS track. The location differ-
ences were determined by fitting the GPS track with a
sequence of third-order polynomials over consecutive 10 s
time intervals. The GPS locations were then interpolated to
the time of each transmitted pulse, and the mean and

standard deviation of the difference values were evaluated
over each kilometer interval along the track. The mean
difference in each interval was typically about 15 m and
could have resulted from uncertainty in the onboard GPS
location itself. Histograms of the difference values show
that >99% of the locations were normally distributed about
the mean, with standard deviations between 10 and 30 m
(an example is shown in Figure 8). About 1% of the
located sources exhibited larger errors, up to several
kilometers, and correspond to the outlying points in
Figure 4. The periodic fluctuations of the source heights
seen in the lower right panel are due to small systematic
timing errors, discussed in Appendix B. As required by

Figure 3. Trajectory of the balloon flight as located by the Lightning Mapping Array (LMA) relative to
the network of 13 mapping stations (green squares). The (lower left) plan view and (middle right) altitude
projections show that the balloon drifted eastward as it ascended, crossing from Colorado into Kansas
shortly after launch. The balloon rose for about an hour, encountering easterly winds above 19 km
altitude and (top) bursting at 23.5 km. Only events located by at least eight stations are displayed. The
coordinate origin was near the center of the network at the location of a lightning interferometer and
electric field change sensor.
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federal regulations, the GPS receiver did not provide
location values above ’17.5 km.
[19] Figure 5 shows the standard deviations of the loca-

tion differences in each Cartesian direction. Up to about

10 km altitude, the location uncertainty was between 6 and
12 m rms in the E–W and N–S directions. The altitude
uncertainty was typically 2–3 times greater, between about
20 and 30 m rms. The increase seen in the E–W and N–S

Figure 4. E–W vertical projection of the balloon trajectory as determined by the onboard GPS receiver
(black line) and from LMA locations of the RF transmitter pulses (red dots). (top left) Entire trajectory;
remaining panels show increasingly expanded portions of the trajectory. All source locations (from six or
more stations) are shown. The ‘‘noisiness’’ of the LMA-determined trajectory in the less expanded views
is due to <1% of the sources incorporating a random noise event at one of the stations (see text) and is
exaggerated by the relatively large dot size, which makes each point visible. Most points lie within a few
tens of meters or less of the GPS-determined track.

Figure 5. Standard deviation of the difference in the LMA and GPS balloon locations versus altitude
(asterisks) in the three Cartesian directions. The solid line in each panel shows the average rms location
uncertainty from the covariance matrix of the solutions; the dashed line in the altitude error panel shows
the error estimated from the simple geometric model of Figure 6b.
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errors above 7 km altitude occurred as the balloon drifted
toward and outside the northeastern boundary of the
network. Below about 3 km altitude (2 km above ground
level) the altitude uncertainty rapidly increased to more than
100 m rms.
[20] The expected values of the location errors can be

estimated from simple geometric considerations, as indicated
in Figure 6. The horizontal uncertainty is determined
primarily by distant stations (Figure 6a). The plan location
is constrained by the measurements at each station to be
within a radial distance Dd ’ ±cDt from its actual location,
where Dt is the rms timing uncertainty. Measurements in
different directions from the source therefore restrict the
plan location to an approximate circle of diameter 2Dd =
2cDt. For an assumed error Dt ’ 40 ns, Dd ’ 12 m. This
simple model, also used by Proctor [1971] and Poehler
[1977], slightly overestimates the measured errors, which
are between 6 and 12 m rms (Figure 5).
[21] The above model represents the solution as the

intersection of circles concentric with each station and
implicitly assumes that the source time is known. The model
can be refined by noting that although the source time is not
known, when the source is situated along the baseline
between two measurement stations, the location accuracy

corresponds to half the uncertainty in the difference in arrival
times. Because the errors are uncorrelated at the two stations,
the rms error in the arrival time difference is

ffiffiffi
2

p
Dt. Thus

Dd = (1/2) c
ffiffiffi
2

p
Dt = (1/

ffiffiffi
2

p
) cDt = 8.5 m. Since sources over

the central part of the network are effectively surrounded,
the refined result is the appropriate one and is in good
agreement with the observed errors. To the extent that
multiple sets of stations are involved in the horizontal
locations, the error can be somewhat smaller, as observed.
[22] The altitude of the source is determined primarily by

the arrival time at the closest station (Figure 6b). The
altitude has the smallest uncertainty when the source is
directly above a station and increases for sources that are
displaced horizontally away from the station. The uncer-
tainty in the radial distance r from the close station is the
same as the horizontal uncertainty for distant stations,
namely ±cDt. From the geometry of the resulting parallel-
ogram the rms error in the height z is given by

Dz ’ c Dt
d þ r

z

� �
; ð1Þ

where d is the horizontal distance of the source from the
close station. When the source is directly above the station,
d = 0 and r = z, giving that Dz ’ cDt, as expected. For the
general case in which d 6¼ 0 the vertical uncertainty is
greater than the horizontal by a factor of Dz/Dd ’ (d + r)/z >
1. This is also seen in the experimental results. For source
heights equal to half the distance between stations (in our
case, z = 5–10 km above ground level), dmax ’ z and
r ’

ffiffiffi
2

p
z, so the ratio of the vertical to horizontal errors is

Dz/Dd ’ 1 +
ffiffiffi
2

p
= 2.4. This is in good agreement with the

observations that the vertical errors were 2–3 times
the horizontal errors. For z small compared to d and r the
vertical error becomes increasingly large.
[23] The estimate of the height uncertainty from

equation (1) is shown by the dashed curve in the left panel
of Figure 5, assuming Dt = 40 ns. The curve was determined
using the actual distance of the balloon from the nearest
station. The separate minima at 5 km and 10 km altitude
correspond to the balloon passing nearly over two stations
as it ascended. The minima correspond to relative maxima
in the measured errors, however, because of signal dropouts
when the balloon was above or nearly above a station. (The
dropouts are more clearly evident in the data of Figure 7,
discussed below, and are due to the vertical dipolar antennas
of both the transmitting and receiving antennas pointing
toward each other, i.e., being close to or in the nulls of
their antenna patterns.) The model results are otherwise in
good agreement with the measured errors.
[24] The geometric interpretations of the simple error

models are compared with those obtained from the hyper-
bolic approach used by Proctor [1971] in section 6 of this
paper.
[25] The location uncertainties can also be determined

from an error analysis of the equations used to obtain the
solutions. As discussed in Appendix A, the source locations
are obtained using a standard iterative least squares proce-
dure (the Levenburg-Marquardt algorithm) to solve the
nonlinear TOA equations [e.g., Bevington, 1969]. The
algorithm linearizes the equations around successive trial
solutions, and the linearization for the final solution gives a

Figure 6. Simple geometric models for the location
uncertainty of sources over the network. (a) Plan view
indicating how distant stations constrain the plan location to
an approximate circle of radius Dd = cDt. (b) Vertical cross
section indicating how a close station enables the altitude of
the source to be determined.
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covariance matrix describing the location uncertainties.
The linearized error estimates are a good approximation to
the actual uncertainties if the measurement errors are
sufficiently small. The validity of the covariance error
estimates was checked using a Monte Carlo simulation,
which showed that the uncertainties are well approximated
by the linearized equations and that normally distributed
timing uncertainties give normally distributed position
uncertainties. (Koshak et al. [2004] made a detailed com-
parison of the linearized covariance error estimates with
Monte Carlo simulations; they found that both approaches
gave similar horizontal errors but that the linearization
approximation gave slightly larger vertical errors than the
Monte Carlo simulation for sources outside the network.)
[26] The covariance-estimated errors for the balloon

measurements are shown by the solid curve in each of the
panels of Figure 5. The rms timing uncertainty was again
assumed to be Dt = 40 ns, and the closest nine stations were
used for determining the covariances. The results are in
good agreement with the observations. The increase with
altitude of the measured E–W and N–S errors is due to the
balloon drifting outside the northeast periphery of the
network. The increase is well matched by the covariance
results in the E–W direction but is underestimated in the
N–S direction. The cause of the latter difference is not
understood. The altitude uncertainties from the covariance
analysis agree well both with the measured errors and with
the estimates from the simple geometric model.

[27] Figure 7 shows a scatter diagram of the covariance-
estimated height uncertainty for each RF pulse during the
balloon flight. In this case the covariance values correspond
to the actual stations used to locate each event. The different
families of curves correspond to different sets of stations
being used to locate the events, with the larger uncertainties
corresponding to less favorable combinations or numbers of
stations. The missing solutions near 11 km altitude in the
leftmost set of curves occurred while the balloon was above
the northeast station and resulted from signal dropouts at
that station, discussed above. The leftmost family of co-
variance values (constituting most of the points in the plot)
are in good agreement with the measured values of Figure 5
(left).
[28] Figure 8 shows a histogram of the vertical location

errors for sources between 10 and 11 km altitude. The
central part of the distribution is well fit by a normal
distribution whose mean is 10 m and standard deviation is
23 m. This corresponds to >99% of the data points and
includes most of the points in this altitude range from
Figure 7. The tails of the distribution are not well fitted
by the normal distribution and reflect a relatively small
number of solutions having significantly larger errors, up to
1 km or larger. These ‘‘bad’’ points most likely result from
the inclusion of an incorrect TOA value (or values) in the
data used to obtain the solutions.
[29] Incorrect TOA values are produced when the signal

of interest is overridden by randomly timed, larger-ampli-
tude signals from local noise sources at one or more
stations. Local noise signals are produced by corona from
nearby transformers and power lines (or in storm conditions,
from elevated objects exposed to strong electric fields) and,
at lower VHF frequencies, are always present in the data
from each station. A variety of other man-made signals
can also contribute to local site noise. As discussed in
Appendix A, only the strongest event in successive 100 or
80 ms time windows has its time recorded; it is not

Figure 7. Covariance estimates of the altitude uncertainty
for each transmitted pulse during the balloon flight. The
results group into curves associated with different combina-
tions of stations being used to locate the pulses. Sets of
curves having larger uncertainty correspond to less favor-
able sets of stations participating in the solution. The
blanked out sources around 11 km altitude in the leftmost
set of curves resulted from signal dropouts as the balloon
passed directly above the northeast station (Figure 3).

Figure 8. Histogram of the difference between the LMA
and GPS location values between 10 and 11 km altitude.
The solid line shows a normal distribution fitted to the data;
the distribution has a mean value of 10 m and a standard
deviation of 23 m and fits over 99% of the data points.
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uncommon for a local noise signal to be stronger than and
preempt distant lightning signals in a given time window.
[30] Almost all local noise events are rejected by the data

processing because only events with correlated sets of
arrival times at the different stations correspond to a
common source. To aid in the rejection, we require that a
minimum of six stations participate in the solution for the
four unknowns (x, y, z, and t) of each event, providing at
least two redundant measurements (degrees of freedom) as a
check on the validity of the solution. However, local noise
events are unavoidably incorporated into some solutions.
This is also evidenced by the outlying points along the
balloon trajectory in the different panels of Figure 4. The
outlying points can be reduced by increasing the minimum
number of stations required to participate in the solutions.
Figure 3 shows only the sources located by eight stations,
which eliminated all outlying points.
[31] To test that the outlying locations were caused by the

incorporation of noise signals, we performed a six station
Monte Carlo simulation in which normally distributed errors
with a standard deviation of 70 ns were added to the arrival
times at the different stations of a simulated event. For one
station chosen at random, an additional error uniformly
distributed over ±7 ms was added. (The value of 7 ms
corresponded to the time window of acceptance over which
the data from a given station could be used in a solution.)
Solutions were occasionally obtained that had goodness of
fit values low enough to be considered a valid solution (and
therefore would have been included in the data points of
Figures 7 and 8) but whose location was substantially
displaced from the correct one and therefore would have
been in the ‘‘bad’’ point tail of the distribution in Figure 8.
For simulated solutions having reasonable goodness of fit
values it was not possible to identify which station contrib-
uted the bad data point from the residues of the least squares
fit. Similarly, we have not been able to identify bad data
points in nonsimulated solutions having reasonable good-
ness of fit values.

3.1. Chi-Square Distributions

[32] Excluding bad data points, the above mentioned
results indicate that the effective timing errors of the LMA
system were about 40 ns rms for the balloon sounding
data. The timing errors can be more precisely determined
by examining the goodness of fit values of the solutions.
(The goodness of fit is given by the reduced chi-square
value cn

2 of the solution, discussed in Appendix A.) In
particular, one can compare the distribution of reduced
chi-square values for the solutions with the theoretical
distributions. The theoretical distributions are given by
Bevington [1969] and assume the measurement errors are
Gaussian distributed.
[33] Figure 9 shows the observed and theoretical distri-

butions of the reduced chi-square values. Separate compar-
isons are made for different values of the number of degrees
of freedom, i.e., for solutions obtained from different
numbers of stations. The solutions were obtained assuming
a nominal 70 ns rms timing error at each station, but the chi-
square values are readily scaled to an rms error of any Dt by
multiplying by a factor (70 ns/Dt)2. The reduced chi-square
values shown in Figure 9 have been adjusted to correspond
to an rms error Dt = 43 ns and are in good agreement with

the theoretical distributions. This refines the value of the
timing uncertainty and demonstrates that the timing errors
are Gaussian distributed.
[34] The timing uncertainty is slightly larger when fewer

stations participated in the solutions than when more
stations participated. For 10 station solutions (the most
numerous) the best fit corresponds to Dt = 43 ns, while
for six station solutions the best fit corresponds to Dt =
48 ns. Assuming that the six station solutions corresponded
to weaker signals on average, the increase in the timing
errors is likely caused by the receiver signal-to-noise ratio
being smaller for weaker signals.
[35] Figure 10 shows the same type of analysis for actual

lightning data. The timing error is slightly larger for the
lightning signals and was about 50 ns rms. Again, the rms
error increases as the number of stations participating in the
solutions decreased, from about 46 ns for 10 station
solutions to 53 ns for six station solutions. In contrast with
the balloon data, however, the number of located sources
does not go to zero with increasing chi-square but has
a ‘‘tail’’ of approximately constant number density for
adjusted chi-square values greater than about 2. The tail
indicates the presence of non-Gaussian errors, for example,
from the inclusion of local noise events as discussed
in section 3 or from some lightning signals being non-
impulsive, having their peak amplitudes at slightly different
times at the different stations.
[36] Whereas Figure 9 shows that the balloon transmit-

ter pulses were most often located by 10 stations, the
lightning events were most often located by only six or
seven stations. Of 1.3 million events located during the
10 min time interval of the lightning data, 60% were
located by only six stations, 81% were located by six or
seven stations, and 92% were located by eight stations or
less. This behavior is typical and reflects the increase in
the number of lightning sources with decreasing power.
From the study by Thomas et al. [2001], the number of
located sources typically varies as 1/P, where P is the
estimated source power. As the source power approaches
the network’s minimum detectable level, located events
will tend to be detected by the minimum number of
stations.

3.2. Summary

[37] The effective timing errors of the LMA system are
found to be about 43 ns rms for the deterministic trans-
mitter pulses (i.e., pulses having a well-defined shape) and
about 50 ns rms for lightning signals. The 50 ns uncer-
tainty for lightning is found to vary somewhat with the
number of stations participating in the solutions and also
for different storms or time intervals but is representative
of the STEPS data. For sources between about 6 and
12 km altitude over the central part of the network, the
location accuracies are 6–12 m rms in horizontal position
and 20–30 m rms in the vertical. The location accuracies
are degraded somewhat for events over or outside the
periphery of the network.

4. Location Accuracy Outside the Network

[38] Outside the mapping network the location uncer-
tainties increase with distance from the array. In this
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section we present a simple geometric model that shows
the basic way a TOA network locates distant events. The
model provides analytic formulations for the source loca-
tions that enable the increase of the location uncertainties
with distance to be expressed analytically as well. The
model-predicted errors are verified by comparing them
with covariance results for the location uncertainties and,
in section 5.1, with observations of aircraft tracks and
distant storms.
[39] Consider a five station network in the form of a

cross- or plus-shaped array, as shown in Figure 11a. The
source to be located is assumed to be situated a relatively
large distance to the right (east) of the network, approxi-
mately off the end of the E–W (x) baseline. Conceptually,
the network is considered to consist of stations S2 and S4
along the x baseline, called the longitudinal baseline, and
stations S0, S1, and S3 along the N–S or y baseline, called
the transverse baseline. For simplicity the network is
assumed to have the same extent D in both the E–W and
N–S directions. For an actual network, D would correspond
to the network diameter.

[40] The network locates distant events by determining
the range, azimuth, and elevation angles of a source from
the center of the array. In other words, the measurements
determine the spherical coordinates (r, q, f) of the source
relative to the network. Referring to Figure 11, the radius
r of a source (also referred to as the slant range) is
determined from the curvature of the wavefront, primar-
ily as it arrives at the transverse stations (S0, S1, S3).
The azimuth angle f is determined primarily from the
difference in the arrival times at the two ends of the
transverse baseline (S1 and S3). The elevation angle q is
determined primarily by the arrival times at the longitu-
dinal stations (S2 and S4). To keep the formulations
simple, no attempt is made to incorporate redundant
measurements into the model; the redundancies slightly
reduce the timing uncertainties but do not otherwise
affect the basic results.
[41] The conceptual array is essentially the same as the

five station network used by Proctor [1971]. Networks with
greater redundancy consist of 7 to 10 or more stations
deployed over an approximately circular area so that there

Figure 9. Distribution of reduced chi-square (cn
2) values during the balloon sounding for different

number of degrees of freedom n = N � 4. The cn
2 values have been adjusted to correspond to an rms

timing error Dtrms = 43 ns, which gives good agreement with the theoretical distribution (solid lines). The
effective timing uncertainty varied slightly with the number of stations N that participated in the
solutions, ranging from 43 ns for ten station solutions (the most numerous) to 48 ns for six station
solutions.
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will always tend to be stations located transverse to and
along the arrival direction.

4.1. Azimuthal Position

[42] For determining the azimuthal position of the source,
one can assume to first order that the wavefront from
the distant source is planar. Referring to Figure 11b, the
azimuth angle f is determined by the arrival times at the
two ends of the transverse baseline, namely at stations S1
and S3. From the right triangle in the figure, one has that

D sinf ¼ c T3;1; ð2Þ

where T3,1 = T3 � T1 is the difference in the arrival times at
S3 and S1. For small f the rms uncertainty in the azimuth
angle is related to the rms uncertainty in the arrival time
difference T3,1 by Df = (1/D)cDT3,1. The resulting
uncertainty in the y direction is therefore

Dy ¼ r Df ¼ r

D

� �
c DT3;1: ð3Þ

For equal timing uncertainties Dt at each station the rms
uncertainty DT3,1 =

ffiffiffi
2

p
Dt. For Dt = 50 ns, cDT3,1 = 21 m.

At a range of 100 km the azimuth uncertainty is 35 m rms
for a 60 km diameter network typical of the LMA. The
azimuth position is therefore well determined.
[43] In an actual network the azimuth angle will be found

from the difference of the arrival times at a number of pairs
of stations. However, the accuracy of f will be determined
primarily by stations having the greatest separation trans-
verse to the incident signal.

4.2. Range Determination

[44] The range is obtained from the curvature of the
wavefront reaching the network (Figure 11c). Closer
events will have greater curvature; more distant events
will have less curvature. To determine the curvature, we
can assume to first order that the source lies on or above
the x axis so that the wavefront reaches S1 and S3 at the
same time. In addition, S0 is assumed to be halfway
between S1 and S3. The difference T13,0 between the
arrival time at S1 and S3 and at S0 is a measure of the
curvature and thus of the distance to the source.

Figure 10. Same as Figure 9, except for 10 min of lightning data over the network on 11 June 2000. The
timing uncertainty was slightly larger than for the deterministic balloon pulses, having an average value
Dtrms = 50 ns and varying from 53 ns for six station solutions, which are the most numerous for lightning
sources, to 46 ns for ten station solutions. In addition, the distributions have an enhanced ‘‘tail’’ at larger
chi-square values. The exact timing uncertainties vary somewhat from storm to storm and during a storm.
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[45] From an analysis of the right triangle in Figure 11c
the slant range r to the source is given by (see section C1)

r ’ D2

8cT13;0
; ð4Þ

and the rms uncertainty in r is

Dr ’ 8
r

D

� �2

cDT13;0: ð5Þ

The range uncertainty thus increases as the square of the
range, scaled by the network diameter D. Although T13,0
can be obtained by averaging the individual time differences
T1,0 and T3,0, the resulting improvement in DT13,0 is
relatively minor. For simplicity we therefore assume that the
timing error for range is the same as for the azimuth
determination, namely DT13,0 =

ffiffiffi
2

p
Dt. With this the range

uncertainty is Dr = 0.47 km rms at 100 km distance from a
60 km diameter network.
[46] Equation (5) confirms Boccippio et al.’s [2001]

empirical result that the range uncertainties increase as r2.
In addition, it determines the constant of proportionality of
the increase in terms of the basic parameters of the network.
Looking at the range determination from the curvature
standpoint also provides a physical explanation for why
Koshak and Solakiewicz [1996] found that a square network
of four stations had blind regions in the directions of the
edges of the square. For such a network, there is no central
station to provide a measure of the wavefront curvature.
Any network having one or two linear rows of stations
would have a similar problem and could not accurately
determine the distance to an event along the direction of the

rows. A good network requires three or more widely spaced
stations transverse to waves approaching from any direc-
tion. This is readily achieved in most networks.

4.3. Height Determination

[47] The elevation angle q is determined from the
arrival times at the longitudinal stations on the close
and far sides of the network (Figure 11d). As in the
azimuth determination, the incident wave can be assumed
to be planar. For simplicity we consider measurements
only at stations S2 and S4 and assume that the source is
situated off the end of the S2–S4 baseline. For distant
sources, q will be small, and the arrival time difference
T4,2 = T4 � T2 is only slightly less than the horizontal
transit time between the two stations. The elevation angle
is determined from the relatively small difference between
T4,2 and the transit time. Small errors in T4,2 therefore
produce relatively large errors in q. This is a fundamental
disadvantage of ground-based networks and results from
the fact that such networks do not have significant
vertical baselines.
[48] Assuming the distance between S2 and S4 is D, then

from the right triangle in Figure 11d,

D cos q ¼ c T4;2: ð6Þ

From this it is readily shown that the rms uncertainty in q is

Dq ¼ c DT4;2

D sin q
’ r

D

c DT4;2

z
; ð7Þ

where z is the height of the source above the plane of the
network. (At large distances, z differs from the altitude h

Figure 11. Simple model describing the fundamental way in which distant sources are located by a time
of arrival (TOA) network. (a) Basic five station network consisting of three transverse stations (S0, S1,
S3) and two longitudinal stations (S2, S4). Geometries for determining (b) the azimuth angle f, (c) range
r, and (d) elevation angle q.
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above local ground due to the curvature of the Earth.) The
corresponding uncertainty in the height is

Dz ¼ rDq ¼ r2

D

c DT4;2

z
¼ Dzq: ð8Þ

As before, DT4,2 =
ffiffiffi
2

p
Dt. For an event at 10 km altitude and

100 km range the height uncertainty is 0.35 km rms for a
60 km diameter network. The height uncertainty is thus
comparable to the range uncertainty (0.47 km).
[49] The above gives the contribution of the elevation

angle uncertainty to Dz. An additional contribution comes
from the fact that the range is also uncertain. The contribu-
tion of the range uncertainty to the height error is given by

Dzr ¼ sin q Dr ¼ z

r
Dr ¼ 8

rz

D2
c DT13;0: ð9Þ

For a source at 10 km altitude and 100 km range, Dzr is only
47 m rms for a 60 km diameter network and is thus small
compared to the elevation contribution. As shown below, for
typical lightning source heights, it can be shown that the
range contribution is always less than the elevation contribu-
tion for large-diameter (e.g., 60 km) networks and beyond a
certain range for smaller diameter (e.g., 15 km) networks.
[50] Except for the slight difference in the DT values, the

contribution of the range uncertainty to the height uncer-
tainty is given by

Dzq ¼
rD

8z2
Dzr:

For a source at 10 kmaltitude and 100km range,Dzq/Dzr’1.9
for a 15 km diameter network and’7.5 for a 60 km diameter
network. The contributions would be equal when rD ’ 8z2.
For a source at 10 km altitude, this occurs at r ’ 53 km for
a 15 km diameter network, with the elevation contribution
being greater for r > 53 km and less for r < 53 km. For a 60 km
diameter network the contributions would be equal at a range
r ’ 13 km, which is smaller than the network radius. By
requiring that r 
 D, networks larger than about D ’

ffiffiffi
8

p
z =

28 km in diameter will always have the elevation contribution
to the height error exceed the range contribution for sources
at or below 10 km altitude. Because the two contributions
to the height error are essentially uncorrelated, the total
altitude uncertainty will be the quadrature sum ofDzq andDzr.
[51] In an actual network the elevation angle will be

determined primarily by the stations with the greatest
separation along the direction to the source.

4.4. Summary

[52] Assuming that the pairwise timing uncertainties DT
are the same for the azimuth, range, and height determi-
nations, and neglecting the range contribution to the height
uncertainty, the model results for the location uncertainties
of sources outside the network are approximately given by

Dy ¼ r

D

� �
cDT ; ð10Þ

Dr ¼ 8
r2

D2

� �
cDT ; ð11Þ

Dz ¼ r2

Dz

� �
cDT ; ð12Þ

where DT ’
ffiffiffi
2

p
Dt is the uncertainty in the time difference

of arrivals at pairs of stations and Dt is the rms timing

uncertainty at each station. As determined in section 3, the
location uncertainties for sources over the network are given
approximately by

Dd ¼ 1ffiffiffi
2

p cDt ¼ 1

2
cDT ð13Þ

Dz ¼ d þ r

z

� �
cDt ¼ 1ffiffiffi

2
p d þ r

z

� �
cDT ; ð14Þ

where d is the distance to the closest station. Thus the
location errors all scale to cDT but with different constants
of proportionality in each case. For Dt = 50 ns, characteristic
of the STEPS network, cDT = 21 m.
[53] Figure 12 shows plots of the location uncertainties as

a function of range for sources outside the network used
during STEPS. The predicted uncertainties from the simple
models of Figure 11 are compared with those obtained from
a covariance analysis of the complete thirteen station
network. This is done for sources at 10 km altitude in E–
W and N–S vertical planes through the network centroid.
The models predict that the range and altitude uncertainties
increase as r2, while the azimuth uncertainty increases only
as r. The covariance results confirm this, showing that the
range errors increase parabolically with distance, while the
azimuth errors increase linearly. (The constants of propor-
tionality are somewhat different in each case, as discussed
below.) The difference in the power law dependence for the
range and azimuth determinations occurs because range is
determined from a second-order measurement (of the wave-
front curvature), while the azimuth requires only a first-
order measurement (of the arrival direction of a planar
wavefront). This causes the azimuth uncertainty at a given
distance from the network to be small compared to the range
uncertainty. On the other hand, the range and altitude
uncertainties both increase as r2 and, for the STEPS
network, are comparable to each other. From equation (12)
the constant of proportionality for the height uncertainty
increases as 1/z so that Dz is larger for sources at a lower
height above the network horizon than at higher height. For
the ’60 km diameter STEPS network and 10 km source
heights the constants of proportionality for the range and
altitude uncertainties were about the same.
[54] Note that the relative magnitudes of the location

uncertainties in distant storms can be obtained from
equations (10)–(12) by expressing Dr in terms of Dy and
Dz. This gives

Dr ¼
8

r

D

� �
Dy

8
z

D

� �
Dz :

8><
>:

The range error Dr exceeds the azimuth error Dy for r > D/8
(i.e., for any location outside the network), and the radial
distortion of the sources continues to increase as r gets
larger. For a source at 100 km range, Dr/Dy’ 13 for a 60 km
diameter network and ’53 for a 15 km diameter network.
Distant storms therefore are elongated radially, an obvious
feature of actual observations (e.g., Figure 15). The radial
exaggeration is greater for a small-diameter network than
for a large network. On the other hand, the ratio of the range
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and height errors is 8z/D and depends on the source height
and not on range. The STEPS network was 60–80 km in
diameter so that sources at z = 7.5–10 km altitude would
have approximately equal range and height uncertainties.
[55] The STEPS network had a larger extent in the E–

W direction than in the N–S direction, with the N–S
extent being 57.2 km and the E–W extent being 76.6 km.
Since the range and azimuth errors depend on the trans-
verse extent, while the altitude error depends on the
longitudinal extent, the range and azimuth uncertainties
in Figure 12 are greater for sources in the E–W plane
(black) than for sources in the N–S plane (red). The
inverse is true for the altitude uncertainty. In all cases
the covariance errors are less than those predicted by the
simple model, assuming that D corresponds to the physical
extent of the network in the appropriate direction. This
reflects the effect of averaging the results of a number of
baselines when data from all stations are used to locate an
event. Stated another way, fully overdetermined solutions
correspond to an effective network diameter larger than the
physical diameter. By matching the model predictions to
the covariance results, the effective size of the thirteen
station network was D = 78 km in the N–S direction and
100 km in the E–W direction. The effective dimensions of

the complete STEPS network were therefore 36% and
31% greater than its physical dimensions. (Another inter-
esting feature of the Figure 12 results is that the difference
between the model- and covariance-predicted errors is less
for the altitude determination than for the range and
azimuth locations. This indicates that the altitude determi-
nation is less affected by averaging and therefore that it is
determined primarily by the closest and most distant
stations of the network (or of the set of stations that
participate in a given solution).)
[56] Rather than being located by all stations of a net-

work, radiation events are invariably located by only a
subset of stations (e.g., Figures 9 and 10). This counteracts
the tendency of the network to be oversized by multiple-
station averaging. The net effect is that the effective
diameter might be comparable to (or smaller than) the
actual diameter, making the simple model estimates approx-
imately correct when the actual diameter is assumed.

5. Further Comparison With Experimental
Observations

[57] In this section we use observations of aircraft tracks
and of distant storms to gain additional insights into the

Figure 12. (top right) Range, (bottom left) azimuth, and (bottom right) altitude uncertainties of (top left)
the STEPS network for sources at 10 km altitude in E–W (black) and N–S (red) vertical planes through
the network centroid. The plus symbols show the covariance error estimates for the complete 13 station
network, assuming a timing uncertainty of 50 ns rms. The solid lines show the error estimates from the
simple model of Figure 11 for 50 ns timing error and network sizes D = 78 km and 57 km in the E–W
and N–S directions, respectively. The model-predicted errors are larger than the covariance values due to
averaging effects when all stations are assumed to participate in the solutions (see text). The contribution
of the elevation angle and range uncertainties to the altitude error are shown separately in the altitude
panel. The approximate network centroid was determined by minimizing the azimuthal error for sources
in the E–W and N–S directions and was at (x, y) = (�6, 0) km relative to the coordinate origin.
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performance of the mapping network and to test the validity
of the error models.

5.1. Aircraft Tracks

[58] On a number of occasions during STEPS the mapping
array located aircraft flying over or near the project area.
Visual observations showed that the aircraft were detected
when ice crystal clouds (cirrus clouds or storm anvils) were
present over or around the network. From this, it was evident
that the LMAwas locating small sparks caused by collisional
charging from the planes as they flew through the ice clouds.

That such charging occurs is well known [e.g., Gunn et al.,
1946; Illingworth and Marsh, 1986; Jones, 1990]. Sparking
has also been detected by the LDAR system from aircraft
flying through cirrus clouds [e.g., Maier et al., 1995].
Because airplanes fly along straight paths, the tracks can
be used to investigate the location uncertainties by measur-
ing the scatter of the sources along the track. This approach
was used to determine the errors of the original LDAR
system, as discussed in section 1.
[59] Figure 13 shows an example of an aircraft track

observed on 25 May 2000. Only 10 stations were operating

Figure 13. Aircraft track over Kansas and Colorado on 25 May 2000. The plane was flying from east to
west at about 9 km altitude (29.5 left) and vectored between two electrically active storms. The airplane
was tracked by the LMA because it was flying through an ice crystal cloud downwind of the storms that
caused it to become charged and give off a steady stream of small sparks. The plane was tracked for
13 min over a 170 km distance and was presumably a commercial aircraft. Two other aircraft were more
weakly detected over the center and to the south of the mapping network. The squares indicate the
operational stations on this day; only sources located by seven or more stations are shown. The triangles
indicate the location of negative polarity ground discharges. The distance scales are in latitude and
longitude in the plan view and in kilometer units in the vertical projections.
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on this day, which was the first day data were recorded
during STEPS. The airplane was flying from east to west
downwind of a line of thunderstorms in eastern Colorado.
The speed (245 m s�1 or 550 mph) and altitude of the
track are typical of a commercial airliner. As it flew
westward, the aircraft gradually ascended from 8.5 km to
9.0 km altitude (28–29.5 left) and vectored through the
gap between two thunderstorms. After passing between the
storms the track ended as the plane presumably emerged
into cloud-free air. More than 300,000 sparks were located
over the 800 s (13 min) duration of the track. Two weaker
tracks are also seen in Figure 13, south of and over the
center of the network.
[60] Figure 14 shows the standard deviation of the

scatter about the mean track and compares the scatter with
the covariance estimates of the location uncertainties.
Separate plots are shown for the E–W, N–S, and altitude
errors. The standard deviation of the scatter (red plusses)
was determined relative to a cubic spline fit to the track
and is smoothed by a 13 s (3.2 km) running average. The
black dots indicate the covariance values for the individual
events, assuming 50 ns rms timing errors. As in Figure 7,
the dots group into multiple sets of curves corresponding
to different sets of stations being involved in the solutions.
The average of the covariance results is shown by the set
of green dots and should correspond to the observed
scatter. The two are often in good agreement, but the
scatter is sometimes larger than would be predicted by the
average covariance value. The set of orange points at
the bottom of each plot is the covariance error if all
stations contributed to the solutions and should represent
the lower limit of the location uncertainty. This is indeed
the case: Some station combinations come close to achiev-
ing the lower limit, and the measured scatter sometimes
achieves it as well.
[61] In the first half of the track the airplane flew toward,

over, and past the southern part of the network. During this
time the E–W error decreased from 200 m rms to almost
10 m and then increased again (Figure 14 (top)). The
minimum error occurred at 320 s; at this time the airplane
was at x = �2 km, i.e., almost due south of the coordinate
origin near the center of the network. (The minimum
transverse error location provides a means of defining the
centroid of the network in a given direction. The covariance
analyses of Figure 12 showed that when all stations were
incorporated into the calculations, the network centroid was
at x, y = (�6, 0) km relative to the coordinate origin. The
Figure 14 results for the 25 May airplane track indicate that
the network centroid was at about (�2, 0) km for the
10 stations that were operational on that day.) The E–W
scatter agreed well with the predicted covariance values up
through the time of the minimum but became more erratic
for about 300 s afterward.
[62] The N–S error (Figure 14 (middle)) had a

broader and shallower minimum at about 575 s as the
airplane passed due west of the coordinate origin. The
covariance minimum was only partially reflected in
the observed scatter, probably because the sparks were
weak and even dropped out during this time (shown
later in Figure 17).
[63] The altitude uncertainty (Figure 14 (bottom))

showed two local minima as the airplane passed over

the southern edge of the network. The first minimum, at
about 200 s in Figure 14, occurred as the airplane
approached station ‘‘J’’ on the southeast edge of the
network. The second minimum (at 400 s) occurred as the
airplane passed over the southwestern station ‘‘G.’’
The airplane passed within 14 km horizontal distance of
station J and 2 km horizontal distance of G. The altitude
scatter agreed reasonably well with the predicted covari-
ance values while approaching and passing J but did not
agree very well with the covariance values during the
G overpass. Rather, during the G overpass the scatter
exhibited large fluctuations and even had a relative max-
imum at the time of the covariance minimum. The latter
may have been caused by decreases in the signal strength
as the plane passed close to the null of station G’s
receiving antenna. (The first minimum in the altitude error
along the 25 May airplane track occurred not at the time of
closest approach to Station J, which was at x = +12 km in
Figure 13, but earlier, when the plane was at x ’ +25 km.
At this time the plane was off the end of the baseline
between J and the network centroid. From the results for
altitude determination (Figures 11d and 22b) the network
had the greatest longitudinal (as opposed to transverse)
extent at the time of the minimum altitude error. This
is consistent with a visual inspection of the network in
Figure 13 and with the position of the airplane at the time of
the minimum.)
[64] During the final part of the track, from 600 s on,

the observed scatter (red) and average covariance values
(green) agreed well in each direction. The individual
covariance values for the E–W and N–S errors showed
a bimodal distribution, with one of the modes giving
close to the optimal accuracy and the other mode having
errors that were 2–5 times larger. The average covariance
values and the scatter tracked the mode having the larger
errors, indicating that most of the sparks during this time
were located by a less than optimal set (or sets) of
stations. The bimodal behavior was not present in the
vertical errors, indicating that the bimodality resulted from
inclusion or loss of stations along transverse (N–S)
baselines.
[65] Figures 15 and 16 show data for another track, in

this case, for an aircraft flying from west to east at 10–
11 km altitude (33–36 left), 85–120 km northeast of
the network. Good agreement is obtained between the
observed scatter and the covariance error results. At
100 km range, approximately in the middle of the track,
the observed height scatter was between 400 and 500 m
rms, slightly less than the average covariance result (green
dots) and slightly greater than the optimal, all-station
covariance prediction (of about 300 m). (At 100 km range
the model-predicted uncertainty is about 370 m rms.) The
range errors are discussed later and also agree with the
model prediction.
[66] Note that comparing Figures 14 and 16 for the

two aircraft tracks shows that while the optimal covari-
ance-predicted uncertainties (orange dots) varied in a
steady manner with time in both cases, the individual
and average covariance values (black and green dots) as
well as the measured scatter of the source locations
fluctuated considerably during the 25 May track. Fur-
ther examination of the observations indicates that this
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resulted from 25 May being the first day data were
recorded during STEPS and from relatively large differ-
ences in the threshold values for recording data at each
station (Appendix A). The remaining stations of the

network and the communications links between stations
were still being set up on 25 May, and we had not yet
started monitoring and adjusting or equalizing the thresh-
old values. The performance difference is also seen in

Figure 14. Measured and predicted rms scatter of the radiation sources in three Cartesian directions
about the mean of the 25 May aircraft track. Shown are the standard deviation of the observed scatter
(red), the covariance error estimates for each individual spark (black dots, assuming 50 ns rms timing
uncertainty), and a running average of the covariance values (green), for all events located by six or more
stations. The orange dots show the covariance values if all 10 stations operational on that day had located
the events and represent the optimal error. The individual covariances group into sets of curves
corresponding to different combinations of stations, as in Figure 7, some of which approach the optimal
error. The predicted error in altitude shows two minima as the plane passed over or close to the two
southern stations of the network. The x and y errors have minima due south and west of the network
center, respectively.
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range errors for the two tracks, summarized in Figure 20,
wherein the 25 May observations (diamonds) corre-
sponded to a smaller effective network diameter than
the 25 June observations (triangles). The fact that the
network functioned as well as it did on 25 May attests to
the robustness of TOA measurements.
[67] Figures 17 and 18 show the rate of sparking and the

source powers for each of the airplane tracks. The sparking
rate (top panels) is determined by differencing the times
between successive events and involved no averaging. The
rate indicates two modes of discharging: a periodic or
regular mode and an aperiodic or irregular mode. The
periodic mode exhibits a characteristic ‘‘fringing’’ pattern
caused by sparks sometimes being missed by the system.
The upper fringe corresponds to each spark of a periodic

sequence being located. When one spark was missed
between successive located events, the time between
events was doubled and the apparent frequency was
therefore halved, giving rise to the second fringe. Similarly,
the third fringe corresponded to two sparks being missed
between successive detections, etc. The actual sparking
rate therefore corresponds to the top fringe and was about
100 s�1 during the first half of the 25 May track and close to
200 s�1 during the final half of the 25 June track. The
irregular mode was characterized by the lack of fringing;
during these times the sparking occurred at rates up to 1–
10 kHz for both airplane tracks and also had higher
source powers. In the 25 May track the irregular mode
had a sudden onset as the plane got closer to the storms.
This, coupled with the increased rate and higher source

Figure 15. Track of an aircraft heading east over Nebraska on 25 June 2000. The airplane was about
100 km northeast of the center of the mapping network. The black lines in the plan view of this and other
figures indicate state lines of Kansas, Colorado, and Nebraska. Note the radial elongation of the distant
storms NNW of the network. Only sources located by seven or more of the 12 active stations on this day
are shown.
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powers, indicates that the plane had entered a more dense
ice crystal region, presumably the actual anvil cloud of the
storms.
[68] The detected source powers (bottom panels) ranged

from 0.3 W up to about 3 W for the 25 May track and from
2 to 5 W for the more distant 25 June track. The lower
envelope of the values reflects the minimum detectable
source power of the network. In the 25 May track the
minimum detectable power varied in an approximate para-

bolic manner as the plane approached and then receded
from the network.
[69] The fact that the source powers of the aircraft sparks

were close to the minimum detectable values would have
increased the errors in the TOA measurements above the
50 ns values assumed in the covariance analyses. The
average covariance errors therefore represent a lower bound
for the observed scatter, as sometimes seen in the 25 May
data. In Appendix B we show that in addition to random

Figure 16. Same as Figure 14, but for the 25 June track and for all events located by six or more
stations. The measured scatter (red) agreed well with that predicted by the average of the covariance
values (green), but this was somewhat greater than the optimal error (orange) due to the plane’s distance,
which caused the sparks to be detected by relatively small numbers of stations.
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errors, the airplane tracks had systematic sawtooth errors
(Figure B1) that would have been partially responsible for
the fluctuations in the scatter about the mean track.

5.2. Distant Storm Observations

[70] Observations of distant localized storms provide
another way of estimating the range errors of the system.
As seen in Figure 15, the extent of the lightning sources
in distant storms is elongated radially relative to their
azimuthal extent. The radial spread of the sources can be
measured relative to their azimuthal spread to estimate the
range uncertainty. Similar measurements were used by
Boccippio et al. [2001] to estimate the range error of the
LDAR system.
[71] An analysis of the radial and azimuthal variances of

the sources due both to the storm size itself and to the
location errors (see section C2) shows that if the parent
storm itself is circular or nearly circular,

s2range ’ s2radial � s2transverse: ð15Þ

In other words, the inferred variance of the range errors,
srange
2 , is the measured radial variance of the sources, sradial

2 ,
reduced by the measured azimuthal (transverse) variance of
the storm, stransverse

2 .

[72] The result assumes that the azimuthal errors are small
compared to the range errors, which is true for distant
storms. If it cannot be assumed that the storms are circular
(which is often or even usually the case), the result will
apply to averages over a number of storms:

hs2rangei ’ hs2radiali � hs2transversei : ð16Þ

The assumption here is that there is no systematic
dependence of storm orientation in the set of storms being
averaged.
[73] Observations of 60 localized storms at ranges greater

than about 100 km have been used to estimate the rms range
error srange. Figure 19 shows the measured radial and
transverse spreads for each storm and the corresponding
range error from equation (15). Seven out of 20 storms
between 100 and 170 km range had negative apparent
values of srange; since this is impossible, the storms in
question could not have had a circular shape. At these
distances the model-predicted range error is <1.5 km rms
and does not significantly distort the storm so that noncir-
cular shapes can easily dominate the results. Accordingly
(and somewhat arbitrarily), we limited the analyses to the
40 storms beyond 170 km range and used equation (16) to
estimate srange. The averaging was done over eight groups
of four to six storms in each range bin, with the storms in

Figure 17. (top) Rate of detected sparks and (bottom)
radiated source power as a function of time during the
25 May airplane track. The fringing pattern in the rate plot
results from some sparks of a periodic sequence not being
located by the system (see text).

Figure 18. Same as Figure 17, except for the 25 June
airplane track.
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each group being in different directions from the network.
The results are presented in section 5.3.

5.3. Summary of Range Errors

[74] Figure 20 summarizes the estimated range errors and
compares the results with the simple model predictions for
distant storms. The graph is presented in the same log-log
form as Figure 6 of Boccippio et al. [2001] (hereinafter
referred to as B2001) for comparison with their results. The
straight lines in the figure correspond to the r2 range
dependence predicted by the simple model. The bottom
two lines show the model-predicted range errors from
equation (5) for network diameters D = 45 km and 70 km
and for 50 ns rms timing errors, representative of the STEPS
network. The estimated range errors from the distant storm
analyses are shown by the square symbols and the estimated
errors from the two aircraft tracks are shown by the
diamond and triangle symbols. The data points typically
lie between the two lines, indicating that the effective
network diameter was between 45 and 70 km. The effective
diameter corresponds to the transverse extent of the network
and is reduced from the actual diameter by the fact that most
radiation sources were located by only six or seven stations
of the thirteen station array. The distant 25 June airplane
track (triangles) corresponded to the largest effective diam-
eter of about 70 km. The slightly larger uncertainties and

smaller inferred network diameter for the 25 May airplane
track (diamonds) likely resulted from the network not being
fully operational on that day.
[75] The upper three lines and the plus symbols in

Figure 20 are from Figure 6 of B2001 and describe the
inferred range errors for the 16-km-diameter LDAR network
at Kennedy Space Center. The dashed line is the rms error
inferred by B2001 from aircraft measurements presented
by Maier et al. [1995]. The aircraft data were obtained out
to about 35 km range, mostly off scale to the left in
Figure 20. B2001 characterized the range error by its rms
value at 100 km distance; extrapolated to this distance, the
range error from the aircraft data was s100 = 3.6 km. (For
comparison, s100 = 0.35 km and 0.84 km for 70 km and
45 km effective diameters of the STEPS network, respec-
tively.) Letting D = 16 km in equation (5), s100 = 3.6 km
gives DT13,0 = 38 ns for the rms timing error of the LDAR
system. (Maier et al. [1995] reported that the aircraft location
errors were consistent with 50 ns rms timing uncertainty; the
range errors inferred by B2001 refine this result.) For
comparison, the equivalent timing uncertainty of the LMA
for deterministic transmitter pulses was Dt = 43 ns rms at a

Figure 19. (top) Standard deviation of the lightning
sources in distant localized storms in the radial and
transverse directions and (bottom) the inferred rms radial
range error. The negative range errors at <175 km range are
not physically possible and indicate that the storms had
unequal transverse and radial extents.

Figure 20. Standard deviation of the range error versus
range outside the measurement network, showing the
model-estimated performance of 70 km and 45 km diameter
networks (two bottom lines), the errors estimated from
localized storms at distances >150 km from the network
center (open squares, representing averages over four or five
storms grouped in range), and error estimates from the
aircraft tracks of Figures 14 and 16 (diamonds and triangles,
respectively). The top three lines and the data points
denoted by the plus symbols are from Boccippio et al.
[2001] and describe the inferred performance of the LDAR
system at Kennedy Space Center (see text).
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given station and DT =
ffiffiffi
2

p
Dt = 61 ns for time differences of

arrival. Because the LDAR system digitized all the signals
at the central station in exact time synchronization, it would
be expected to have smaller relative timing errors than
independent digitizing of the LMA. Despite its relatively
small size, the LDAR network provided reasonably accurate
range determinations out to at least 35 km range and, by
extrapolation, to more than 100 km range.
[76] At distances greater than about 70 km, however,

B2001 inferred that the range errors of the LDAR system
were significantly larger than would be expected from the
aircraft measurements. This was determined from the radial
spread of sources in storms beyond 75 km range, indicated
by the plus symbols in Figure 20. B2001’s estimates did not
attempt to account for storm size, however, and therefore
overestimated the actual range errors by an unknown
amount. The dotted lines in the upper part of Figure 20 are
the range errors that B2001 determined would be needed to
explain the systematic increase in the height of sources with
distance from the LDAR network. The range errors inferred
from the analysis had s100 values of 22 and 28 km rms, a
factor of 6–8 larger than expected from the aircraft measure-
ments and somewhat larger than the distant storm values.
From equation (4), in order to explain a s100 value of 22 km,
the rms timing uncertainty would have had to increase by a
factor of 6, to 230 ns rms. Alternatively, the transverse
diameter of the network would have had to be decreased
by a factor of

ffiffiffi
6

p
= 2.45 to an effective value of D = 6.5 km.

[77] Appendix B describes the effect of systematic errors
upon the location accuracy and performance of the LMA.
This analysis provides a simpler explanation for the sys-
tematic height errors of the LDAR data as being due to
relatively small, systematic errors in the elevation angle
determination rather than to overly large range errors.

6. Comparison to Hyperbolic Geometry

[78] In this section we relate the simple geometric models
of this study to the geometry of hyperbolic formulations for
TOA measurements. The formulations themselves are de-
scribed by Proctor [1971] and are not repeated here. As
discussed by Proctor and briefly described in Appendix A,
the time differences of arrival (TDOA) at pairs of stations
constrain the source to lie on hyperboloids of revolution
about the baselines between pairs of stations. The three-
dimensional location of the source is determined from the
intersection of three or more such hyperboloids obtained
from four or more stations.
[79] Figure 21a illustrates how stations locate the plan

position of a source over the network. A cross-shaped

network is used to do this. Four sets of hyperbolae are
shown to indicate how the time differences of arrival at
different pairs of stations determine the source location
and the uncertainty in the location. For each station pair
(e.g., 2–3), two hyperbolae are shown which indicate the

Figure 21. Manner in which the hyperbolae correspond-
ing to arrival time differences at pairs of stations constrain
the location and accuracy of sources situated over or near a
TOA network. The sets of hyperbolae for the different
station pairs indicate the effect of timing uncertainties at
those stations on the location. For example, the ‘‘2–4’’
hyperbolae denote the uncertainty in the location from
measurements made at stations S2 and S4 (see text). The
inscribed parallelogram in Figure 21b is from the simple
model of Figure 6b and assumes the same errors used to
generate the sets of hyperbolae.
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effect of the uncertainty in the TDOA values at the stations.
The magnitude of the errors is greatly exaggerated for
purposes of illustration. As can be seen, when the source
has stations in different directions, its location is constrained
to be in an enclosed region that is approximately circular.
This is the fundamental basis of the horizontal error model
in Figure 6a for sources over the network. Hyperbolae are
shown only for pairs of outlying stations (S1–S4) and not
for the central station.
[80] Figure 21b illustrates how the hyperbolae associated

with the close station (S0) defines the altitude of the source,
in comparison with the simple geometric model of Figure 6b.
Three sets of hyperbolae are shown, corresponding to the
time differences of the ‘‘inner’’ station pairs (2–0 and 4–0)
and the ‘‘outer’’ station pair (2–4). Examination of the
hyperbolae shows that height is most constrained by the
inner pair off to the side of the source, i.e., by the 4–0 pair.
The 2–0 and 2–4 differences primarily restrict the hori-
zontal position because the stations are on both side
of the source. The inscribed parallelogram is the simplemodel
result corresponding to the same timing errors; it provides
a good estimate of the horizontal uncertainty (even though
the source is well above the plane of the network) and slightly
underestimates the height uncertainty.
[81] Figure 21c shows how the uncertainty of the plan

location increases for a source just outside the periphery of
the network. The uncertainty has become primarily radial
relative to azimuthal uncertainty. The source still has
stations in opposite directions in the azimuthal direction
but not in the radial direction. The radial error was the
primary cause of the increased E–W and N–S errors seen
during the balloon flight as the balloon drifted outside the
network (Figure 5).
[82] Figure 22 shows the hyperbolic geometries for

locating a source outside the network. As in the model
formulations of Figure 11 the source is assumed to be east
of the network to illustrate the effect of the transverse and
longitudinal stations in determining the location. The plan
view of Figure 22a shows how the hyperbolae associated
with the transverse stations (S0, S1, S3) locate the source
azimuth and range. The combination of the inner arrival
time differences 3–0 and 1–0 determine the range of the
source, consistent with the model idea that these time
differences determine the curvature of the wavefront. While
the same time differences also constrain the source in the
azimuthal direction, the greatest constraint is provided by
the outermost stations, 3–1, as in the model. Also, the range
uncertainty has become relatively larger than the azimuthal
uncertainty. Note that the projection can be in any plane
passing through the transverse stations and thus gives the
three-dimensional radius or ‘‘slant range’’ to the source.
[83] The vertical projection of Figure 22b illustrates how

the longitudinal stations determine the elevation angle of the
source. The elevation angle, in combination with the range
from the transverse stations, determines the height of the
source. The most distant station pair, 4–0, least restricts the
elevation angle. Both the close inner pair (2–0) and the outer
pair (2–4) restrict the elevation angle by about similar
amounts, with the outer pair being somewhat better owing
to the larger distance between the stations. (The 2–4 pair
would become increasingly better for more distant sources.)
None of the longitudinal station pairs serve to constrain the

range of the source, which is determined by the transverse
stations. In the example shown the altitude uncertainty is
mostly due to the range error and to a lesser degree to the
elevation angle error. However, for more distant sources at
the same altitude the elevation uncertainty would dominate
the height uncertainty, again as indicated by the model.
[84] In summary, the results of the simple geometric

models are fully consistent with those of the more rigorous
hyperbolic formulations. The advantage of the geometric
models is that they provide first-order analytical estimates
of the location uncertainties.

7. Summary and Further Discussion

[85] Time of arrival systems such as the Lightning Map-
ping Array constitute a highly accurate and discriminatory
space-time correlation filter. Noise signals that do not arrive
‘‘at the right place at the right time’’ are mostly excluded
from solutions, whereas signals emanating from a common
source can be accurately located. The basic unit of location
accuracy is cDt, where Dt is the rms uncertainty in the TOA
measurements at each location. The value of Dt is best
determined from the distribution of goodness of fit values
(Figures 9 and 10). For the STEPS network, Dt was

Figure 22. Same as Figure 21, but for sources outside the
network. (a) The top projection shows how the transverse
stations (S1, S0, S3) determine the range and azimuthal
position of the source and apply in the slanted plane passing
through the through the transverse stations and the source.
(b) The vertical projection shows how the longitudinal
stations (S2, S0, S4) determine the elevation direction of the
source which, in conjunction with the range, gives the
source altitude (see text). The dotted lines provide a
geometrical construction for incorporating the slant range
information into the determination of the source height.
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determined to be 43 ns rms for deterministic pulses from a
balloon-borne transmitter and about 50 ns rms for typical
lightning observations. These are overall values that include
the effect of the various different sources of error or uncer-
tainty, including small systematic timing andpositional errors,
and are representative of the performance of the STEPS
network. For 50 ns errors, cDt = 15 m; the location uncertain-
ties are proportional to cDt and scale upward or downward
depending on the source location relative to the network and
the direction in which the uncertainty is being evaluated.
[86] With the above accuracy, impulsive events over the

central part of the network are located with an uncertainty as
small as 6–12 m rms in the horizontal and 20–30 m rms in
the vertical. The uncertainty gradually increases with dis-
tance away from the central part of the network. For sources
outside the network the range and altitude uncertainties
increase as the square of the range, r2, while the azimuthal
uncertainty increases linearly with r. The difference in the r
dependence causes the range uncertainty to dominate over
the azimuthal uncertainty so that plan views of distant
storms are radially elongated. For large-diameter networks
such as the one used during STEPS (D ’ 70 km) the range
and altitude uncertainties are comparable to each other for
sources at typical lightning altitudes (z ’ 5–10 km). For
smaller diameter networks the range uncertainty exceeds the
altitude uncertainty, for example, by about a factor of 5 for
the 16-km-diameter LDAR network.
[87] The location accuracy outside the network also

depends on the network diameter and is conveniently
expressed in terms of the rms uncertainties at 100 km range.
For the 70 km diameter network operated during STEPS the
range uncertainty at 100 km range was found experimen-
tally from aircraft tracks to be 300–600 m rms. The altitude
uncertainty was comparable in magnitude. The measured
errors were somewhat larger than the optimal uncertainties,
which from covariance error analyses were ’200–300 m
rms for range and altitude, assuming all stations participated
in the solutions. The uncertainty in azimuthal position was
an order of magnitude smaller, being 20–30 m rms for all-
station solutions.
[88] The difference between the observed and optimal

errors is that all stations usually do not participate in
solutions. Spark-type discharges such as those produced by
lightning or aircraft are most often located by the minimum
allowed number of stations, which is N = 6 for the LMA
processing (Figure 10). One reason for this is that the radiated
source powers P of natural lightning have an approximate
1/P distribution [Thomas et al., 2001] so that most located
sources are low-power events that will tend to be detected by
a minimal number of stations (often but not necessarily the
closest stations). A typical LMA network has 10–12 mea-
surement stations; the larger number of stations increases the
likelihood that events will be located by more than the
minimum number. Empirically, however, the primary advan-
tage of increasing the number of stations is that more sources
are located during a given lightning discharge.
[89] The effective timing uncertainty as determined from

the distribution of goodness of fit values varies somewhat
with the number of stations participating in the solutions
and also from one data set to another. These effects are the
subject of continued study; they can be caused, for example,
by different stations being operational on a given day or

during a given storm, by temporal variations in the back-
ground noise levels at the stations, differences in storm
location, and possibly even by differences in the nature of
the lightning activity itself. For the STEPS observations the
effective rms timing uncertainty Dt has been found to vary
from 43 to 55 ns for lightning solutions involving seven or
more stations. The most recent LMA network, the Univer-
sity of Oklahoma/National Severe Storms Laboratory sys-
tem in central Oklahoma, has smaller effective timing
uncertainties, ranging from 38 to 45 ns rms for lightning
sources located at six or more stations. The improvement
likely results from the use of newer and more identical
stations and electronics configurations and more accurate
determinations of the positions and time delay values for the
individual stations.
[90] As discussed in Appendix A, locally generated noise

is always present in the data from each station. Local noise
events impact the observations and the location uncertain-
ties in several ways. First, the noise limits the station
sensitivity by increasing the level above which lightning
events can be detected. If a local noise event is stronger than
the lightning event to be located and occurs within the same
measurement time window, it prevents that station from
participating in the solution for the lightning source. By
chance, a small fraction of local noise events happen to lie
close enough in time to the lightning event and are incor-
porated into the set of arrival times used to locate its source.
In the latter case the data are ‘‘contaminated,’’ and the
source location is in error by some amount. Some of the
contaminated source locations are obviously in error, but
the contamination is not always obvious, nor can contam-
inated sources be identified objectively on the basis of
residuals or goodness of fit values.
[91] The balloon sounding data indicate that noise-con-

taminated solutions typically comprise <1% of the located
sources. Obviously contaminated locations can be substan-
tially reduced or eliminated by restricting the sources to
those located by N = 7 stations or more. This eliminates a
significant number of valid solutions but can be useful when
looking at the overall lightning activity in a storm or in
other situations where there are a large number of sources
(e.g., Figures 3, 13, and 15). A good compromise for
lightning measurements that maximizes the number of valid
solutions while keeping contaminated events at an accept-
able level is to have the minimum number of participating
stations be N = 6 and to vary the goodness of fit value below
which the data points are utilized for anaylsis. Empirically,
for the LMA observations, this occurs for goodness of fit
values cn

2  2 (see section A2).
[92] Other factors that degrade the location accuracy are

more difficult to quantify and usually cannot be controlled.
For example, if the emitting region is larger than the radio
frequency wavelength (’5 m), or if the radiated signal is
not impulsive, the source may be timed differently at each
station. The result will be a poorer fit to the arrival times and
a more uncertain location. Similarly, continuous radiation
events such as stepped or dart leaders that have weak or
multiple embedded impulsive events can give incorrect or
noisy locations. Observations of such events are substan-
tially improved by decreasing the width of the measurement
time windows. The LMA is typically operated either with
80 or 100 ms time windows or in high-resolution mode with
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10 ms time windows. With 10 ms windows the observations
are best made with small-diameter networks and can be
used for detailed studies of individual lightning discharges
[Rison et al., 2000; Behnke et al., 2003]. A compact array of
mapping stations is currently being operated in 10 ms mode
at New Mexico Tech’s Langmuir Laboratory for Atmo-
spheric Research. Eight stations are deployed within a 4 km
diameter area, and four outlying stations over a 60 km
diameter area, for detailed studies of lightning over the
mountaintop laboratory.
[93] The LMA is able to monitor lightning activity over a

relatively large geographical area compared to the dimen-
sions of the network itself. Observations during STEPS
showed that lightning-producing storms can be monitored
out to 200–300 km range, namely over an area 400–600 km
(250–375 miles) in diameter. Such monitoring is now
routinely conducted by the North Alabama LMA being
operated by NASA’s National Space Science and Technol-
ogy Center (NSSTC) [Goodman, 2003; Koshak et al., 2004]
(http://branch.nsstc.nasa.gov). The NSSTC group processes
the data in real time and supplies the resulting ‘‘total
lightning’’ observations to the National Weather Service
office in Huntsville, who are evaluating its usefulness in
nowcasting severe weather [Darden et al., 2003]. Real-time
processing and display has recently been developed for an
LMA being operated in central Oklahoma by OU/NSSL
(see http://lightning.nmt.edu/oklma). A third LMA system
is currently being installed for weather monitoring and
nowcasting studies at White Sands Missile Range in central
New Mexico. Finally, a similar, commercial version of
the mapping system, called LDAR-II, is being operated
in the Dallas-Fort Worth metropolitan area by Vaisala,
Incorporated [Demetriades et al., 2004; L. D. Carey et al.,
Lightning location relative to storm structure in a leading-
line, trailing-stratiform mesoscale convective system,
submitted to Journal of Geophysical Research, 2004], and
a second LDAR-II system is soon to be set up in the
Houston, Texas, area as part of the Houston Environmental
Aerosol Thunderstorm (HEAT) project planned during 2005.
[94] In addition to making lightning observations, the

mapping system is able to detect and track aircraft flying
through ice crystal clouds over or near the network. The
aircraft emit a steady sequence of sparks as a result of
collisional charging with the ice crystals, and the sparks are
often strong enough to be located. The source powers of the
aircraft sparks are just above the minimum detectable values
of the LMA, and the ability to detect such tracks is a good
indication of the network sensitivity. Since most located
lightning events also have source powers near the minimum
value, such lightning events are energetically similar to the
aircraft discharges.
[95] The sounding balloon measurements show that air-

borne instruments or aircraft can be accurately tracked in the
vicinity of a network by having the platforms carry a pulsed
transmitter whose frequency is in the passband of the
mapping system. The transmitter can be compact and
lightweight and can operate with a low duty cycle for
extended time periods from a small battery. Limited
amounts of data can be transmitted to ground by modulating
the time between transmitted pulses (Appendix D).
[96] Finally, the TOA mapping technique can be used for

other kinds of applications. Examples include the detection

and monitoring of faults on power transmission lines,
tracking of ground-based equipment or personnel carrying
pulsed transmitters, and studies of radio frequency interfer-
ence from buildings and other installations. A set of
lightweight, compact, and readily deployable mapping sta-
tions is currently being constructed to be used use both for
lightning studies and other applications. The system will be
portable and can be operated from automotive batteries and
will enable observations to be made in locations and
situations where they would otherwise not be feasible.

Appendix A: The Lightning Mapping Array

[97] In this appendix we describe the basic way in which
the LMA operates and the manner in which its data are
processed. Figure A1 shows the basic geometry of the TOA
technique. An impulsive radiation event occurring at (x, y, z)
and time t is received at a number of measurement locations
on the ground. At location (xi, yi, zi) the arrival time is ti,
according to

c t � tið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xið Þ2 þ y� yið Þ2 þ z� zið Þ2Þ

q
; ðA1Þ

where c is the propagation speed of the signals. Measure-
ments of ti at N 
 4 locations can be used to determine the
four unknowns (x, y, z, t). The mapping network deployed
during STEPS consisted of 13 stations spread over a 60 �
80 km area in northwestern Kansas and eastern Colorado
(Figures 3, 13, and 15). Other LMA networks in Alabama
and Oklahoma consist of 10–12 stations spread over similar
or slightly smaller areas. The stations are spaced typically
15–20 km apart and are connected by wireless commu-
nication links into a central location. The communications
enable the station operation to be monitored and controlled
and also enable real-time processing and display of the data.
[98] Each LMA station receives the lightning signals in a

locally unused television channel in the lower VHF band
(usually TV channel 3, 60–66 MHz). The radio signals are
logarithmically received over a large (80 dB) dynamic
range, and the detected signals are digitized using a spe-
cially designed data acquisition and processing card (the
LMA card) interfaced to a standard PC. The LMA card
digitizes the signals at a 25 MHz rate and determines the
arrival times of the peak events in successive 80 ms time
intervals, or ‘‘windows.’’ (The initial version of the LMA
cards digitized the receiver output at a 20 MHz rate and had
100 ms time windows. The STEPS network consisted of
both types of stations.) Events are captured only when their

Figure A1. Basic TOA technique. Measurements of the
arrival times ti at N 
 4 locations are used to determine the
location and time of the source event (x, y, z, t).
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peak amplitude exceeds a threshold value which can be
remotely or automatically adjusted at each station. Typical
threshold values correspond to received power levels of
�70 to �80 dBm at the antenna output, depending on local
site noise. Sites have to be specially tested and selected to
provide this level of sensitivity and are usually situated in
remote locations. Typical threshold values enable the array
to detect radiated source powers down to a few tenths of a
watt in the receiver passband for events over or near the
network (Figure 17).
[99] The above operation enables each station to detect up

to 12,500 events, or ‘‘triggers,’’ per second, corresponding
to the number of 80 ms intervals in 1 s (10,000 events s�1

for systems having 100 ms windows). The threshold values
are typically adjusted to produce ’100–1000 triggers s�1 in
the absence of lightning. The background trigger rate is
caused by local corona and radio frequency interference at
each station, which varies with time, sometimes substan-
tially and even over relatively short (second) time intervals.
Anomalous propagation or variable reception of distant
television stations in the receiving channel can also interfere
with the operation of the network. The composite video of
an interfering television signal will trigger the system at the
full rate so that the threshold needs to be adjusted to be
above the peak of any interfering television signal level.
[100] The data stream from the LMA card is assembled

into a sequence of 10 Mb or larger files and recorded locally
on disk. Decimated data are communicated to a central
location for real-time processing and display. The decima-
tion typically selects the strongest radiation event in five
successive windows, namely in a 400 ms time window. The
data stream includes the arrival time of the peak event (with
the 40 ns time resolution of the digitization) as well as the
peak signal amplitude (with 0.5 dB resolution). A header is
placed in the data stream at the beginning of each second,
which contains time information for the current second and
related diagnostic information.
[101] The overall data rate is 73 kb s�1 when the system is

triggering at full rate and 4–8 kb s�1 for 5–10% trigger
rates. At the latter rates and depending on storm activity a
40 Gb disk can record the data at each station for up to 60–
120 days. The decimated data rates are proportionally lower
and can be communicated over the wireless links for real-
time processing. In current systems the primary data re-
cording is on hard disk at each station, with the disks being
swapped out as they become full and their data transferred
to RAID drives for postprocessing as desired. Diskless
operation is possible when fast communication links are
available into a central location.
[102] The stations can also be operated in high-rate mode.

This mode, used for detailed lightning studies, determines
the peak radiation event in successive 10 ms windows and
can be initiated remotely by uploading different firmware
into the LMA card.

A1. Timing Considerations

[103] A fundamental difference between the LMA and the
current and early LDAR systems at Kennedy Space Center
is that the TOA values are measured independently at each
station rather than at a central site. The independent timing
was made possible by the availability of inexpensive,
compact GPS receivers capable of providing an accurate

time base at each station. It has the substantial advantage of
significantly reducing the data rate needed to communicate
the measurements to a central location for real-time pro-
cessing. In turn, this allows the communications links to be
digital for increased reliability and noise immunity. The
independent timing also enables the stations to be operated
independently of each other, without communications links,
allowing a network to be deployed and operated in situa-
tions where measurements would otherwise not be possible.
The GPS receivers at each station output a 1 pulse s�1

signal whose timing is accurate to a few tens of nano-
seconds rms. The signal is used to control the frequency of a
master 25 MHz oscillator on the LMA card. The oscillator
frequency is controlled within a few counts per second of an
exact 25 MHz rate, and the difference from the exact count
is recorded in the data stream and used to compensate the
arrival times during the data processing.
[104] The fact that the arrival times are quantized in 40 ns

increments causes a random timing error, whose rms value
is 40/

ffiffiffiffiffi
12

p
’ 12 ns [e.g., De Fatta et al., 1988]. The

quantization error adds in quadrature to the other errors
and contributes in a minor way to the overall timing
uncertainty of ’50 ns rms. A related error arises from the
fact that the receiver output is quantized in amplitude as
well, introducing an additional uncertainty in the time of the
signal peak. The effect of the amplitude quantization is
reduced by using 12 bit bipolar (11 bit unipolar) digitization
rather than the 8 bit digitization available for the earlier
LDAR system. Short-duration radiation events impulsively
excite the receiver, causing its output to oscillate, or ‘‘ring,’’
with the impulse response of the receiver bandpass. The
3 dB width of the ringing amplitude is approximately 1/B ’
170 ns, where B = 6 MHz is the filter bandwidth. At the
0.06 dB level corresponding to the 11 bit digitization the
response width is about 22 ns. This somewhat increases
40 ns quantization of the temporal sampling.
[105] The deterministic pulses of the sounding balloon

measurements are indicative of the magnitude of the sys-
tem-related errors. The pulses were 125 ns in duration,
corresponding to ’8 cycles of 63 MHz radiation. The finite
duration of the pulses somewhat broadens the width of the
receiver response relative to impulsive inputs, and the
overall timing errors for the pulses were about 43 ns rms
(Figure 9). Except for the broadening, the 43 ns value
represented the combined effects of clock uncertainties
associated with the independent timing measurements, sig-
nal quantization, and receiver signal-to-noise effects, which
cause weak signals to be timed less accurately than strong
signals. It also includes additional uncertainties such as
those associated with the exact position of the receiving
antenna and the time delay from the antenna into the LMA
card. The peak power of the balloon transmitter was
relatively low, on the order a few watts, but with a duty
cycle of about 10�5, resulting in the average power being
minimal. In some respects, the transmitter pulses are similar
to lightning signals, most of which have low power levels in
the receiver passband and are often broadened as well.
[106] The rms timing errors of lightning signals for the

STEPS observations were somewhat larger, ’50 ns rms, but
not substantially larger. The increase in the timing error
indicates that the lightning signals themselves introduced an
additional uncertainty of about

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
502 � 432

p
= 25 ns to the
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measurements. This represents the effects of the nondeter-
ministic nature of the lightning signals, such as not being
impulsive in time and/or localized in space.

A2. Solution Technique

[107] The data processing solves the TOA equation (A1)
to determine the source location and time from the mea-
sured arrival times. For the LMA data, this is done on a
second-by-second basis using the nonlinear least squares
Marquardt algorithm. The algorithm minimizes the chi-
square goodness of fit value

c2 ¼
XN
i¼1

t obsi � t fiti

� 2
Dt 2rms

; ðA2Þ

where ti
obs is the measured arrival time at the ith station, ti

fit

is the predicted arrival time from equation (A1) for each
trial solution, and N is the number of stations participating
in the solution. Dtrms is the uncertainty of the timing
measurements, assumed to be a constant and the same for
all stations. The Marquardt algorithm minimizes c2 in an
iterative manner by linearizing the TOA equations for each
station around successive trial solutions and by solving the
linearized equations to obtain the next trial solution. As
discussed by Bevington [1969], the linearized curvature
matrix used to obtain the solution can be inverted to obtain
the covariance matrix describing the uncertainties of the
(x, y, z, t) values [see also Koshak et al., 2004]. Finally,
because the value of the timing uncertainty Dtrms is not
necessarily known a priori, a nominal value of 70 ns is
assumed in the processing. The resulting c2 values are
readily scaled to any constant rms error, however, by
multiplying by (70 ns/Dtactual)

2.
[108] The goodness of fit values are normalized relative to

the number of measurements N by determining the reduced
chi-square value, cn

2 = c2/n, where n = (N � 4) is the
number of degrees of freedom (i.e., the number of redun-
dant measurements) for the solution. The cn

2 values have a
known statistical distribution when the measurement errors
are Gaussian distributed, which depends only on n. As
discussed in section 3.1, the distribution of measured cn

2

values for different degrees of freedom provides the most
accurate way of estimating the overall errors of the system.
[109] In processing the LMA data, we require that a

minimum of N = 6 stations participate in a solution,
providing two or more redundant measurements as a check
on the solution’s validity. Most lightning sources are located
by the minimum number of stations, whereas the determin-
istic pulses from the balloon-borne transmitter were most
often located by measurements at 10 stations. The fact that
there is good agreement between the observed and theoret-
ical distribution of cn

2 values indicates that most of the
measurement errors are Gaussian distributed. The nonzero
tail seen in the distributions for the lightning sources in
Figure 10 is indicative of an additional, uniform error
contribution, presumably due to the lightning events being
nonimpulsive.
[110] From the statistical distribution of goodness of fit

values in the presence of Gaussian errors (e.g., Figures 9
and 10) the restriction cn

2  2 passes about 90% of valid
data points. This applies to actual chi-square values,

namely those adjusted to take into account the difference
between the actual and assumed rms timing errors, as
described in connection with equation (A2). Thus for
50 ns actual errors an actual chi-square value of 2 corre-
sponds to an unadjusted value of 2/(70/50)2 ’ 1.0. While
this restriction is often used in displaying and analyzing
lightning observations, the processing typically accepts
solutions having larger unadjusted values so as to not miss
energetic radiation events.
[111] The solution calculations are performed in a Carte-

sian coordinate system tangent to the reference surface of
the Earth at the coordinate origin for the network. The GPS-
derived latitude, longitude, and altitude of the station
locations are converted into the Cartesian frame using the
WGS-84 ellipsoidal model for the Earth’s surface (i.e., the
same model used by the GPS), and the (x, y, z) source
locations are converted back to geocentric coordinates and
GPS altitude in the final output. GPS altitude differs from
mean sea level by on the order of 10 m, depending on
location. As noted by Koshak et al. [2004], the solutions can
be obtained directly in geocentric coordinates, but the form
of the TOA equation (A1) makes it convenient to work in a
Cartesian system.
[112] One advantage of working in a Cartesian frame is

that equation (A1) can be cast as a set of linear equations in
(x, y, z, t), which are useful in obtaining the solutions. This
is done by squaring both sides of equation (A1) and
subtracting the equations for N 
 5 stations from each
other to obtain (N � 1) difference equations [Koshak and
Solakiewicz, 1996; Koshak et al., 2004]. In the process the
quadratic terms in (x, y, z, t) cancel, leaving only terms
linear in the unknowns. In particular, differencing the
equations for stations i and j gives

xij xþ yij yþ zij z� c2tij t ¼ kij; ðA3Þ

where xij = (xi � xj), etc., kij = (1/2)[(ri
2 � rj

2) � c2(ti
2 � tj

2)],
and ri

2 = xi
2 + yi

2 + zi
2. Equation (A3) defines a plane in four-

dimensional (x, y, z, t) hyperspace, and the solution is the
intersection of four or more such hyperplanes. The arrival
time values are incorporated in both the tij and kij terms. The
advantage of the hyperplane approach is that the equations
can be solved analytically for any set of five or more
measurements to obtain (x, y, z, t). The disadvantage is that z
is poorly determined for networks that are close to planar
but not quite planar. The x, y, t values are adversely affected
as well. Since actual networks are nearly but not quite
planar, the hyperplane approach gives an approximate
solution that can be used as the starting estimate for a more
accurate least squares solution.
[113] To understand why the hyperplane approach does

not give accurate solutions for near-planar arrays, it is
helpful first to consider the hyperbolic approach to solving
equation (A1). The hyperbolic approach differences
equation (A1) for N 
 4 stations directly, without first
squaring each equation. This eliminates t as a variable in the
equations, giving three or more equations in (x, y, z) only.
The equations depend only on the time differences of arrival
(TDOA) rather than on the individual arrival times them-
selves. As discussed by Proctor [1971], measurements of
the TDOA for a given pair of stations define a hyperboloid
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of revolution about the baseline between the stations. The
source must lie on the hyperboloid. The solution for (x, y, z)
corresponds to the intersection of the hyperboloids from
three or more baselines, and the solution for t is then
obtained from one or more of the original equations.
Although the hyperbolic approach is conceptually useful
in understanding the solution (e.g., Figures 21 and 22), the
formulations are complex and analytically intractable for all
but a few ideal network configurations.
[114] The differencing used in the hyperplane formula-

tions does not eliminate t as a variable, only the quadratic
terms in (x, y, z, t). Consequently, a minimum of five
measurements are needed to obtain four difference equa-
tions to determine the unknowns, in effect discarding one
redundant measurement in the process. For the special case
in which the network is exactly planar (in the x-y plane, for
example), z is eliminated as a variable due to the zij = zi � zj
coefficients being identically zero. This would allow the
equations for only four stations to be differenced to deter-
mine (x, y, t). The height z would then be determined from
one or more of the original equations. An analytic, linear
least squares version of this approach was proposed by
Koshak and Solakiewicz [1996] as a means of obtaining
solutions for planar networks, instead of the iterative least
squares approach.
[115] When the network is not quite planar, the arrival

times at the stations are altered from what they would be for a
planar network, and one must retain the terms in z in the
hyperplane equations. However, the zij coefficients tend to be
relatively small, causing the determinant of the coefficients
to be somewhat ill conditioned. The z value is particularly
not well determined, and the (x, y, t) values are affected as
well. Thus the linear hyperplane approach by itself gives
only an approximate solution, as found by Koshak et al.
[2004]. The hyperplane solution is highly useful as a starting
point for the nonlinear least squares procedure, however, and
the LMA processing takes advantage of this.
[116] A major issue in processing actual observations is

identifying sets of arrival times that correspond to each
other and discriminating against events that do not so
correspond. This presents a computational challenge requir-
ing that all possible combinations of arrival times be
examined to determine which values correspond to common
events. The amount of processing needed to do this is
substantially increased by the presence of local noise in
the data from each station, which cannot be identified as
such in advance and which have to be treated as potentially
locatable events. The number of events that have to be
examined is determined from the physical constraints im-
posed by the transit time between individual pairs of
stations and by the requirement that a minimum of six
measurements be available for solutions.
[117] The LMA processing is done in 1 s segments and

begins by combining the arrival times at all stations into a
single one-dimensional array sorted sequentially by time.
(Among other things, this allows data to be combined from
stations having different measurement time windows, as, for
example, in the STEPS network.) The array contains the
arrival times in increasing time order but not in any
particular station order, which is identified in a parallel
array. The sequential sorting scheme greatly simplifies the
search procedure for valid data combinations; by starting at

the beginning and going point by point through the array, it
is necessary only to look forward from a given data point
for candidate sets of arrival times and still explore all
possible combinations. The basic assumption is that each
arrival time value is the initial event of a locatable source; if
it isn’t the initial event, it should have been included in an
earlier solution, or it is a noise event. The assumption
is tested by searching forward in time for six station
combinations of data values that satisfy the transit time
constraints. The first five arrival times of each such com-
bination would be from stations closest in space to the
possible event and are used to obtain the hyperplane
solution. To guard against height errors in the hyperplane
solutions, physically unreasonable z values are replaced by
a nominal, physically reasonable value. In turn, the hyper-
plane solution is used to predict the approximate arrival
times at the other stations, and it is determined if events
were detected at the other stations near the predicted times.
If six or more stations have possible data, the values are
analyzed with the iterative least squares algorithm to obtain
a trial solution. This procedure is repeated for all possible
six station combinations having the same initial point; the
trial solution having the lowest reduced chi-square value
(below a specified maximum value) and smallest location
uncertainty (from the trace of the covariance matrix) is
considered to be the valid result. The metric used is the
product of cn

2 and the trace. (If cn
2 is less than unity, it is

assumed to be unity for the purposes of computing the
metric.) The data values that participated in the solution are
flagged to delete them from further consideration, and the
procedure continues to sequence through the array one data
value at a time.
[118] A useful option in the processing procedure is to

generate a ‘‘template’’ of arrival time differences whenever
a valid solution is found. The template is used to search
through the full array of arrival times for additional events
emanating from sources close to the template solution. Also,
two or more combination search passes can be made
through the array, first with a low cn

2 cutoff value (e.g., 2
or 5), and then with a higher value (e.g., cn

2 = 500). The
latter is useful for capturing energetic lightning events that
have large cn

2 values owing to the source being spatially or
temporally extensive.
[119] The overall number of combinations that need to be

tested increases rapidly with the total number of stations and
with the trigger rates at each station, and this can substan-
tially slow the processing. For the situation in which all
stations of a 13 station, 70 km diameter network are
triggering at the maximum rate, on the order of 400,000
six station combinations need to be examined by the
forward search procedure per starting event. (It was not
unusual for full trigger rates to be produced by severe
storms during STEPS.) At lesser trigger rates the number
of combinations is substantially reduced, and many combi-
nations can be eliminated immediately by the transit time
constraints. With current processor speeds and memory
capacity, active storms can be processed at rates ranging
from faster than real time to factors of 20–50 slower than
real time, depending on the number of stations, trigger rates,
and the amount of lightning activity. Data decimated to
400 ms sampling windows can be processed faster than real
time, even at full data rates. In highly active storm situa-
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tions, it is not unusual for more than a million sources to be
located in a 10 min time interval.
[120] In principle, the received power values at each station

could also be used to help identify potential sets of data points
(or even, in the least squares minimization, used to locate the
source) since the power values will tend to decrease with
distance from the source. In practice, however, the received
power values from sources differ substantially from the
expected 1/r2 range decrease due to local receiving effects
at each station (interference, attenuation) and to the unknown
radiation pattern of the lightning source itself. The measured
signal powers are therefore used only after the source location
is determined to estimate the source power.

Appendix B: Systematic Errors

[121] In this appendix we address the issue of systematic
errors and their effect on the location results. The TOA
technique basically solves the equation velocity � time =
distance, or vt = d. More specifically, it solves vDt = Dd,
where Dd and Dt are the differences between the source and
station locations and arrival times. The quantity v is the
propagation speed. Systematic errors can arise from inac-
curate values of any of the three quantities v, Dt, or Dd. So
far, we have considered all errors to be lumped into an
effective timing error; that is, the errors are considered to be
‘‘time-like.’’ However, the effective timing error can include
contributions from imprecise station positions or propaga-
tion speeds. Positional errors would be important if they are
comparable to the overall 40–50 ns timing uncertainty of
the system, namely 12–15 m (40–50 ft).

B1. Timing Errors

[122] Because the clocks used for measuring the arrival
times operate independently at each station, systematic
errors can be present in the timing data. These errors are
due to the digitizer clock frequencies being slightly different
at the individual stations and would be cumulative with
time. Indeed, such errors are seen in both the airplane and
balloon track observations. Figure B1 shows an expanded
view of 17 km of the 25 June airplane track. In the plan
view the scatter of the sources is in the SW-NE direction,
i.e., radially away from the center of the network to the
southwest. The source locations exhibit a characteristic
sawtooth pattern in which the mean range steadily increased
and then suddenly decreased, often by 200–300 m or more.
[123] The large decrease, or ‘‘jump,’’ near the center of

the track in Figure B1 was slightly greater than 500 m in
range. This and the other range jumps were accompanied by
changes in the apparent height of the sources; for example,
an 800 m height decrease occurred at the time of the 500 m
range jump. The jumps occurred at intervals of 1.5–2 km
along the track, corresponding to time intervals of 6–8 s.
Also, when plotted versus time instead of position, the
jumps occurred precisely at 1 s boundaries. A similar
sawtooth pattern was seen in the 25 May airplane track,
but the jumps were smaller (on the order of 100 m) and
increased rather than decreased the range. The 25 May
jumps were spaced about 1 km apart, corresponding to
about 4 s time intervals, and also occurred at second
boundaries. Similar sawtooth-type variations are also seen
in the expanded balloon sounding data (Figure 4).

[124] The sawtooth pattern of source locations indicates a
gradual buildup of systematic errors in the TOA values,
followed by a sudden correction of the errors. The size of
the jumps is comparable to the random scatter, indicating
that the systematic errors are comparable in magnitude to
the random errors. The fact that the jumps occur at second
boundaries indicates they are due to corrections in the
timing of the 1 pulse-per-second (pps) output from the
GPS receivers at the stations.
[125] As described in Appendix A, the 1 pps output is

used to control the frequency of a 25 MHz oscillator on the
LMA card. More importantly, however, the 1 pps transition
provides the starting point for the timing measurements for
each ensuing second. The GPS receivers have their own
internal 10 MHz clock, which is free-running, and the 1 pps
transitions are synchronous with the 10 MHz internal clock
transitions. The time of the 1 pps transition occasionally
slips by one cycle of the internal oscillator, or by 100 ns, as
needed to stay in synchronization with actual time. The
correction occurs independently at the different stations and
evidently causes noticeable corrections in source locations
every few seconds or so. The ramps between corrections are

Figure B1. Expanded view of the 25 June aircraft track,
showing (bottom) the sawtooth pattern of source locations
caused by accumulated timing errors in the plan view and
(top) similar systematic height variations. The sudden
decreases or jumps in the locations occur at 1 s boundaries,
which is when cumulative timing errors are reset in the GPS
output at individual stations (see text).
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caused by the 25 MHz clocks at each station not being
precisely adjusted. This results in the gradual accumulation
of small timing errors during each second. The data stream
contains information used to compensate for this effect in
the processing, but residual effects remain.
[126] The magnitude of the time corrections can be

estimated from the size of the jumps and from the model
formulations of section 4. The 500 m range decrease in
Figure B1 occurred at a distance close to r = 100 km and
therefore corresponded to a fractional change of �0.005 in
range. In the context of the simple model the range is
determined by the difference T13,0 in the arrival time at the
outer transverse stations relative to the central station
(Figure 11c). From equation (4), T13,0 = 20 ms for a storm
at 100 km range. Also, a �0.005 fractional range change
would have corresponded to a +0.005 fractional change in
T13,0. The sudden jump in T13,0 would thus have been
+0.005 � 20 ms, or 100 ns. This is the value that would
be expected from the 1 pps signal slipping by one 10 MHz
clock cycle. Either a single station was primarily responsi-
ble for determining the range, or the timing was fortuitously
corrected at the same second at two or more stations that
were determining the range. The fact that most jumps were
smaller than 500 m indicates that the timing corrections
were at stations that had less influence on the range value.
[127] The sawtooth variations make a significant contri-

bution to the rms scatter about the aircraft tracks, compa-
rable to the random errors. Both the systematic and random
errors are accounted for in the overall timing uncertainties,
however, and therefore in the covariance- and model-
predicted location uncertainties as well. GPS receivers
currently provide additional information on the offset of
the 1 pps transition from true time; use of this information
should enable the sawtooth errors to be reduced below
detectable levels in future versions of the LMA.
[128] Systematic timing errors also arise if the time delays

between the VHF antennas and the digitizer at each station
are imprecisely known. The delays are on the order of
several hundred ns and differ from station to station due to
different cable lengths and any differences in the receiver
components. Examination of the residuals of data solutions
at each station provides a way of detecting and correcting
large (’40 ns) systematic errors, but usually not smaller
errors.

B2. Spatial Errors

[129] Systematic spatial errors can result from imprecise
values of the station locations. The station positions are
determined by averaging the output of each station’s GPS
receiver for a few hours to a day or more. Tests indicate that
a few-hour average determines the GPS antenna position to
within about 1–3 m in the horizontal and 2–7 m in the
vertical. These results are obtained in the absence of
selective availability (the purposeful introduction of errors
into the GPS transmissions), which was turned off on 2 May
2000, just prior to the STEPS field observations. The
location information required in the processing are the
positions of the VHF antenna at each station, which is
typically located 30 m or so away from the station elec-
tronics and GPS receiver. (This is done to reduce radio
frequency interference from the electronics below detectable
levels at the antenna. In some networks and sites, it is also

needed for the VHF antenna to be clear of local obstruc-
tions.) With some care, the x, y, z offsets between the GPS
and VHF antennas can be measured to ’1 m or so and
should not contribute significantly to the overall error.
[130] Station location errors have the greatest effect on the

height of sources in distant storms. The height of distant
sources depends on the elevation angle of arrival, q, and the
range r. As discussed in connection with Figure 11d, q is
determined primarily from the arrival times at the close and
far stations along the arrival direction. For distant sources, q
is small, and the arrival times differ only by a small amount
from the transit time between the stations. Relatively small
errors in the presumed station locations (or in the measured
TOA values) cause errors in q whose effect is magnified for
distant events. This is illustrated in section B3.

B3. LDAR Height Errors

[131] As discussed in sections 1 and 5.2, B2001 found a
systematic increase in the height of the maximum lightning
activity with distance from the LDAR network. The max-
imum lightning activity occurred at 9 km altitude in storms
over and close to the network but artificially increased up to
20 km altitude at 300 km range. B2001 explained the height
increase as being due to larger than expected range errors
and to a consequent tendency for located events at large
distances to be dominated by overranged events from
intermediate-distance storms. Assuming a constant eleva-
tion angle, the overranging increased the apparent altitude
of the sources. The range errors appeared to be large from
observations of distant storms in the LDAR data, as
discussed in section 5.2. In turn, the explanation of the
systematic height increase supported the idea of larger than
expected range errors.
[132] Figure B2 illustrates how TOA networks will tend

to overrange sources outside the network. If the measure-
ment errors are sufficiently small, the location uncertainties
are symmetric about the source location. However, if the
errors are not sufficiently small (or even for small measure-
ment errors, at sufficiently large range), nonlinear effects
cause the uncertainties to be asymmetric and the average

Figure B2. Hyperbolic geometry for the plan location of a
distant source, illustrating how measurement errors cause
asymmetric location errors and bias the source location
outward in range.
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location to be biased outward in range. The bias occurs even
in the absence of systematic measurement errors and can be
seen from the hyperbolic geometry of how distant sources
are located. The bias is exacerbated when the errors are
large, due either to the range itself being large and/or to
large errors in the measurements themselves.
[133] B2001 showed that overranging of sources at inter-

mediate distances (due both to random errors and biasing of
the range values) provided a possible explanation of the
systematic height increase with distance. However, the
range errors needed to do this were an order of magnitude
larger than those that were expected from aircraft measure-
ments. They were also larger than would be expected
from the size of the LDAR network and its timing errors
(section 5.3). B2001 assumed that elevation errors were not
a significant factor in the height increase, but this was an
incorrect assumption which, when taken into account,
provides a simple and better explanation of the systematic
height increase.
[134] Figure B3 shows the effect of a systematic baseline

or timing error on the apparent height of sources versus
range from the LDAR network. The results are overlaid on
the source density contours from Figure 7 of B2001. The
comparison shows that the observed height increase is
perfectly fitted if the baselines between opposite sides of
the network were systematically overestimated by 15 m
(triangles). Equivalently, the time differences of arrival at
opposite sides of the network were systematically under-
estimated by 50 ns. The height values were determined
using the model result equation (6) for the elevation angle of
distant sources in the presence of the systematic errors.
When correct baseline and timing values are used, the

model slightly overestimates the 9 km height of sources
within 30–50 km range of the network but accurately
estimates the source heights at larger ranges (circles). The
calculations assume that the effect of the range error upon
the source height was small compared to the elevation error,
as shown in section 4. Biased and random range errors
would still have an effect, but this will be small in
comparison to the elevation errors. Whatever the range
errors of the LDAR system may have been at large
distances, the uncertainty in the elevation angle is the
dominant factor in the source height values, and overly
large range errors are not necessary to explain the system-
atic height increase.
[135] It is not possible to determine the detailed cause of

the height error without knowing the specifics of the LDAR
operation and processing. However, the above results indi-
cate that it was due to a systematic baseline or timing error.
A 15 m baseline overestimate corresponds to a 0.1%
fractional error in the 16 km baseline length D. Systematic
baseline errors will occur if imprecise values are used for
the local radius of curvature of the Earth, namely if the
WGS-84 model is not used to convert station latitude and
longitude values to Cartesian coordinates in the data pro-
cessing. The mean radius of the Earth is 6370 km but varies
from 6378 km at the equator to 6357 km at the poles. A
0.1% or 6.4 km overestimate of the assumed radii of
curvature would give the observed results. Systematic
height errors in distant storms have been obtained in the
LMA processing, both from not using the WGS-84 conver-
sion and by processing data with purposely incorrect station
locations. The accuracy of the TOA technique is such that
the results are sensitive to the shape of the Earth.
[136] Alternatively, from equation (6), the same system-

atic height error would be produced if the arrival time
differences T4,2 at the close and far stations were under-
estimated by 0.1% (or if the propagation speed was under-
estimated by the same amount). For a 16 km baseline, T4,2 ’
53.3 ms for distant sources. Systematically underestimating
the arrival time differences by about 50 ns therefore would
give the same height errors, as indicated in Figure B3. Such
a systematic timing error would tend to average to zero in
the azimuthally integrated data of B2001, but land-sea
asymmetries in the amount of lightning activity around
the LDAR network could allow a bias not to average to
zero. (Systematic timing errors of 50 ns should also be
detected in the pulser data used to calibrate and monitor the
LDAR’s operation.) From the subsequent discussion on
propagation speeds, absent an artificial error, it would be
difficult to underestimate the propagation speed by 0.1%.
[137] The effect of overestimating the baseline lengths is to

increase the apparent height of distant sources. Conversely,
underestimating the baseline lengths would decrease the
apparent heights. For sources below some altitude z1 the
measured time delay value T4,2 will exceed the assumed
transit time, making the hypotenuse shorter than the adjacent
side in the right triangle of Figure 11d and cosq > 1. Sources
just above or at z1 will appear to be on the network horizon,
while sources below z1 will be rejected, as if they have
‘‘disappeared’’ below the horizon. (Alternatively, if the
cosq value is set to unity by the processing program, the
sources will accumulate on the network horizon. This latter
effect was noticed in initial processing of LMA observations

Figure B3. Predicted height increase with range for
sources at 9 km altitude if the baseline distances of the
16-km-diameter LDAR network were overestimated by
0.1% (15 m) (triangles) or, equivalently, if the arrival time
differences at close and far stations were underestimated by
50 ns (solid curve). The results are overlaid on observations
of the systematic height increase found by Boccippio et al.
[2001] (contours); all heights are above the local Earth (see
text).
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from Oklahoma in 1998.) For sources over or near the
network the effect of small positional errors in the station
locations is primarily to increase the chi-square values of the
least squares solutions and does not significantly affect the
source locations.

B4. Propagation Speed

[138] The propagation speed is a function of the dielectric
constant of the Earth’s atmosphere, which, in the VHF
range, depends on altitude and water content. From Doviak
and Zrnić [1993] the speed of radio waves is typically
reduced from its free space value by 0.03% at sea level and
by about 0.02% at 600 mbar pressure. Thus the propagation
speed varies slightly with altitude, causing the signals to
be refracted somewhat from their true location and
arrival direction. Refraction has a significant effect only
on distant storm observations, however, which are already
substantially affected by the random measurement errors.
Consequently, we have not attempted to include refraction
effects in the present study; it usually suffices to use an
average propagation speed.
[139] The LMA processing currently uses the 600 mbar

speed, namely 0.02% less than the free space value c �
299,792,458 m s�1. In other words, the propagation speed is
assumed to be v = c/1.0002. 600 mbar pressure corresponds
to about 4.5 km altitude in the atmosphere, so the 600 mbar
value would represent the average speed for sources at
’9 km altitude. The average speed would be slightly
overestimated for sources at higher altitude and slightly
underestimated for sources at lower altitude. At most, this
incurs an error of <0.01%. The effect of a 0.01% propaga-
tion speed error would be to alter the distance r between a
given station and the source by (0.01%)r or by 1 m for
sources at 10 km range, 5 m at 50 km range, and 30 m at
300 km range. Such errors are small in comparison to the
random timing errors.
[140] The above expresses the effect of propagation speed

on the range to the source. The analysis can be made more
specific by noting that, from equation (4), the range r of a
distant source is inversely proportional to the propagation
speed c. In finite difference form the differential expression
for r is therefore

Dr

r
¼ �Dc

c
; ðB1Þ

where Dc is the error in c. Thus the fractional error in r is
the negative of the fractional error in c. Overestimating c by
0.01% would underestimate r by the same fractional
amount. At 100 km range the systematic error in r would
be Drc = �r(Dc/c) = �10 m, as above. From equation (5)
the random range error for a 70 km diameter network
having 50 ns rms timing uncertainty is Drt ’ 350 m rms.
Therefore the systematic range error is 3% of the random
error. At close ranges the speed error increases relative to
the timing error but remains small in absolute terms (e.g.,
’1 m at 10 km distance).
[141] The effect of a propagation speed error is magnified

in directions transverse to r and for distant storms, can
become comparable to the uncertainty due to timing errors.
The magnification effect on height can be seen from the
differential of z = r sinq, where q is the elevation angle to the

source. For distant storms, q is determined from equation (6),
and the differential for z gives

Dz

z
¼ � cos2 q

r

z

� �2 Dc

c
’ � r

z

� �2 Dc

c
: ðB2Þ

For sources at 10 km height and 100 km range the error in z
is magnified by a factor of (10)2 = 100 relative to the error
for r. A 0.01% speed overestimate would therefore under-
estimate the apparent height of the source by 100 m. This
result has been verified by processing data for the 25 June
aircraft track with different values of the propagation speed.
Such an error would still be less than that due to random
timing errors, which is 300 m rms for a 70 km diameter
network having 50 ns timing uncertainties.
[142] As seen for the other errors, it is the height of distant

sources that is most affected by propagation speed errors
rather than the range. Interestingly, use of the 600 mbar
propagation speed guarantees a small systematic height
error for distant storms. This is because the elevation angle
depends on the time difference of arrival at the close and far
stations along the direction of arrival, which for low
elevation angle sources is determined by the propagation
speed immediately above the Earth’s surface. The 600 mbar
value overestimates this speed by up to 0.01% and poten-
tially by more if ground effects further slow the wave.

Appendix C: Range Uncertainties Outside the
Network

C1. Simple Model Formulation

[143] The range of a source outside the network is
determined from the curvature of the wavefront at stations
transverse to the arrival direction, as indicated in Figure 11c.
From the right triangle in Figure 11c, one has that

D=2ð Þ2þ r2 ¼ r þ cT13;0
� 2

:

Simplifying and noting that cT13,0�D/2 for sources at large
ranges gives

r ¼ D2

8cT13;0
� cT13;0

2
’ D2

8cT13;0
: ðC1Þ

The differential of this gives

dr ¼ � D2

8cT 2
13;0

dT13;0 ¼ � 8r2

D2
cdT13;0;

so that the rms uncertainty in r is

Dr ¼ 8
r

D

� �2

cDT13;0: ðC2Þ

The uncertainty in the range r is thus proportional to the
arrival time uncertainty DT13,0 and increases as r2, scaled by
the network diameter D.

C2. Distant Storm Observations

[144] For distant storms, the experimentally observed
variance of the lightning sources is the sum of the variances
due to the storm size and to the measurement uncertainties.
Denoting the standard deviation of the locations in the radial
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and azimuthal directions as srange and sazim, respectively,
the total variances are given by

s2radial ¼ s2kstorm þ s2range

and

s2transverse ¼ s2?storm þ s2azim ;

where skstorm and s?storm are the standard deviations
associated with the size of the storm itself in the radial
and transverse directions, respectively. Assuming the storm
extents are related by skstorm = f � s?storm, where f is a shape
factor that can be greater or less than unity, the standard
deviation of the range error is given by

s2range ¼ s2radial � f 2 s2transverse � s2azim
� �

:

If f is not substantially different from unity, the effect of the
azimuthal error sazim can be neglected in comparison to the
range error srange, giving

s2range ’ s2radial � f 2 � s2transverse: ðC3Þ

Finally, if the storms are circular or nearly circular, ( f ’ 1)
so that

s2range ’ s2radial � s2transverse: ðC4Þ

Alternatively, if f is not close to unity, one can average the
results over a number of storms in different directions from
the network. Denoting the average by angle brackets, one
has that h f 2i ’ 1 if there is no systematic dependence of
f on the direction of the storm or from storm to storm. Thus
from equation (24),

hs2rangei ¼ hs2radiali � h f 2 � s2transversei
¼ hs2radiali � hf 2ih�s2transversei
’ hs2radiali � hs2transversei: ðC5Þ

This result is the same as equation (C4) but applies to
averages rather than individual storm values.

Appendix D: Pulse Transmitter and Data
Encoder

[145] The pivotal component of the balloon-borne pulse
transmitter is an integrated circuit oscillator in the frequency
band (60–66 MHz) of the LMA. The oscillator (Fox,
Incorporated KF090AT) has a control pin for turning on
and off the 63 MHz oscillator with a digital logic level of 0
or 5 V. In our pulse transmitter the digital logic signal comes
from one of the output pins of a microcontroller (Motorola
68HC12), which has special circuits for producing pulses
with precise frequency and duration.
[146] The 63 MHz signal from the integrated circuit

oscillator is amplified in two stages with GaAs power
transistors (Motorola MRF136 and MRF171A). In order
to reduce power consumption, the amplification of the
power transistors is held at a low level by the microcon-
troller until just before the oscillator’s 63 MHz pulse is
gated out. The pulse duration was 125 ns (eight cycles of
63 MHz), which is the minimum width that could be
produced by the microcontroller. The power emitted during
the pulse was estimated to be about 60 W into a matched
load. However, the source powers estimated by the LMA
were only 1–2 W. The difference is presumed to be due to a

mismatch between the transmitter and the wire antenna on
the balloon package and to gain losses associated with the
patterns of the transmitting and receiving antennas.
[147] The microcontroller (1) searched for the appropriate

serial string of position and time information from a global
positioning system (GPS) receiver (Magellan GPS 310),
(2) converted each character in the string to a time interval
corresponding to the numerical equivalent of the character,
and (3) gated the oscillator to produce pulses after each time
interval.
[148] Each LMA receiver recorded the time each pulse

was received with an uncertainty of about 40 ns. From the
collection of times recorded at each receiver the position of
the pulse transmitter and the time it emitted the pulse could
be determined as if it were a pulse of radiation from
lightning. In addition, by differencing the times of succes-
sive pulses, the numerical equivalent of each character in
the string from the GPS receiver on the balloon could be
recovered, thus providing a direct measure of the position of
the balloon-borne instrument. Figure D1 shows the time
interval between pulses from a single LMA station during a
2 s interval just after 0000 UTC. The time interval includes
two strings from the GPS receiver. Some of the characters
corresponding to the time intervals are shown in the figure,
and the two character strings are given in the figure caption.
[149] In other applications the time intervals between

pulses would not need to correspond to characters. Instead,

Figure D1. Time intervals between pulses as a function of
time. Some of the corresponding characters are labeled. The
character at 9.5 ms is an underscore, which filled intervals
when the balloon-borne GPS receiver was not sending
characters to the microcontroller. The cluster of characters
between 4.2 and 5.7 ms are the numbers 0 to 9, commas,
asterisks, and decimal points. The two strings shown in
the figure are GPGGA,000129.51,3933.9830,N,10159.
1883,W,1,09,0.9,06496, M,,,,*36 and GPGGA,000130.
44,3933.9813,N,10159.1803, W,1,09,0.9,06500,M,,,,*3D.
The first string gives the position of the balloon-borne
receiver at 0001:29.51 UTC; the position was 39�
33.98300N latitude, 101� 59.18830W longitude and 6496 m
above a reference surface. Nine satellites were being used
by the GPS receiver.
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they could, for example, correspond to the numbers derived
from a sensor or sensors attached to a computer via an
analog-to-digital converter. In this case, the position of the
instrument would be determined in only one way: by
locating the sources of the pulses as the LMA does for
lightning. The pulse transmitter/microcontroller combination
allows the LMA to be used as a telemetry receiver that also
gives the location of the transmitting instrument. Several
identical instruments could be transmitting simultaneously,
in which case the times to be subtracted to give time intervals
would be selected to come from nearly the same locations;
the instruments would be distinguished by their locations
rather than by transmitting on separate frequencies.
[150] It is interesting to calculate the bit rate that can be

transmitted by this unusual method of telemetry. The LMA
itself establishes a minimum time interval between pulses
because it records the time for only the largest amplitude
pulse in successive time windows that are typically 80 or
100 ms in duration (but which can be reduced to 10 ms). In
addition, if the Lightning Mapping Array is also being used
to study lightning, most of the windows would probably be
reserved to receive pulses from lightning. Thus the conver-
sion from the value of a datum to a time interval between
pulses could be a linear transformation such as

dt ¼ dtmin þ dtbit D; ðD1Þ

where dtmin is the minimum desired time interval between
pulses, dtbit is the time interval increment corresponding to
an increase of 1 in a data word, and D is the data value. The
time interval increment, dtbit, must be greater than the
uncertainty in the difference between the arrival times
recorded by the LMA receivers, which is about 60 ns. If N is
the word length, then the information content of each time
interval between pulses is N bits, and the bit rate is

B ¼ N=dt ¼ N= dtmin þ dtbit Dð Þ: ðD2Þ

Thus for this method of telemetry the bit rate depends on
the data values. With a minimum interval between pulses
of 1 ms and dtbit = 120 ns the average bit rate is about
104 bits s�1, with 10 bit words.
[151] In the situation in which the Lightning Mapping

Array was used only as a telemetry receiver (in the absence
of lightning) the bit rate could be increased by reducing the
minimum duration between pulses.
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