All the normal rules apply: Due next class, work on separate paper, start early, show your work, label everything, specify units, circle answers.
For all these problems, keeping your work in fractions will produce easier, more accurate results!

1. For the figure below, find I and V using circuit reduction and other techniques.

2. For the figure below, find V and I using circuit reduction and other techniques.

3. In the figure below, $\mathrm{Vs}=5 \mathrm{v}, \mathrm{R}_{1}=375 \Omega, \mathrm{R}_{3}=25 \Omega$. With a multimeter we measure 1.25 v at N_{2} with respect to ground. Find the voltage at N_{1} (w.r.t. Gnd), $\mathrm{R}_{2}, \mathrm{~V}_{1}, \mathrm{I}_{1}$, and I_{2} using nodal analysis and other techniques.

4. In the figure below, $\mathrm{Vs}=10 \mathrm{v}$. With a multimeter we measure (w.r.t. Gnd) 4 v at N_{1} and 7 v at N_{2}. Find V_{1} and V_{2}.

5. In the figure below, $\mathrm{I}=8 \mathrm{~A}$. With a multimeter we measure (w.r.t. Gnd) 60 v at N_{2}. Using nodal analysis and other techniques, find $\mathrm{Vs}, \mathrm{V}_{1}, \mathrm{~V}_{2}$, and the measurement we would expect to get at N_{1} (w.r.t. Gnd).

6. The figure below shows a number of capacitors connected in series. Redraw this circuit as a single capacitor equivalent to this combination, and calculate its value C_{eq}.

7. The figure below shows a number of capacitors connected in parallel. Redraw this circuit as a single capacitor equivalent to this combination, and calculate its value C_{eq}.

8. The figure below shows a number of capacitors connected in parallel. Redraw this circuit as a single capacitor equivalent to this combination, and calculate its value C_{eq}. Do not Round off your answer.

9. The figure below shows a number of capacitors connected in series. Redraw this circuit as a single capacitor equivalent to this combination, and calculate its value C_{eq}.

