All the normal rules apply:
Due next class, work on separate paper, start early, show your work, label everything (especially on graphs -including axes, time/voltage divisions, function plots, values, etc.), specify units, circle answers.

Watch your units!

1. For the figure below:

a. Simplify the circuit and find the time constant τ. Hint: $\tau=\mathrm{R}_{\mathrm{eq}} \cdot \mathrm{C}_{\mathrm{eq}}$
b. Plot the charge and discharge curves for V_{1} using the $2 / 3$ estimation method shown in class using at least four points. Your plot should go out to at least $t=4 \tau$. To plot the charge curve, assume the switch has been in position B for a long time and switches to position A at $t=0$. For the discharge curve, assume that the switch has been at A for a long time, and switches to B at $\mathrm{t}=0$.
c. Assume $\mathrm{V}_{\mathrm{s}}=10 \mathrm{v}$. Plot the charge and discharge curves for V_{1} using the exponential formula used in class. Your plot should go out to at least $t=4 \tau$ using at least four points.
2. For the circuit below, assume $V_{s}=5 v$ and R is unknown. In the lab we observe the charge curve for this circuit on an oscilloscope. We measure the following:
$\mathrm{V}_{\mathrm{C}}=0.5 \mathrm{v}$ when $\mathrm{t}=50$ us
$\mathrm{V}_{\mathrm{C}}=4.5 \mathrm{v}$ when $\mathrm{t}=1150$ us.

a. Using the $10 \%-90 \%$ rise time rule of thumb, calculate the time constant τ for this circuit.
b. Using your results from part a, determine the value of R.
c. Assume the switch has been in position A for a long time and switches to B at $\mathrm{t}=0$. Plot V_{C} for $0<\mathrm{t}<4 \tau$ using at least four points. Show all your work! Be sure to plot and confirm that your 10% values and 90% values match those used earlier. (Remember that the rule of thumb for the earlier calculation is an approximation).
d. Assume the switch has been in position B for a long time and switches to A at $t=0$. Plot V_{C} for $0<\mathrm{t}<4 \tau$ using at least four points. Show all your work! Be sure to plot and confirm that your 10% values and 90% values match those used earlier. (Remember that the rule of thumb for the earlier calculation is an approximation).
3. For the figure below: $\tau=2 \mathrm{~ms}, \mathrm{~V}_{\mathrm{s}}=15 \mathrm{v}$.

a. Determine the value of C .
b. Assume the switch has been in position A for a long time and switches to B at $\mathrm{t}=0$. Plot $\mathrm{V}_{\text {ceq }}$ for $0<\mathrm{t}<4 \tau$ using at least four points. Show all your work!
c. Assume the switch has been in position B for a long time and switches to A at $t=0$. Plot $\mathrm{V}_{\text {ceq }}$ for $0<\mathrm{t}<4 \tau$ using at least four points. Show all your work!
