All the normal rules apply:
Due next class, work on separate paper, start early, show your work, label everything (especially on graphs -including axes, time/voltage divisions, function plots, etc.), specify units, circle answers.

The following diagram applies to problems 1 and 2 (do not reuse data between problems).

1. In a simple RC circuit shown in the diagram above, the switch has been in position B for a long time and switches to A at $\mathrm{t}=0$. We observe a capacitor charging with the standard exponential growth curve. At $\mathrm{t}=37.5 \mathrm{~ms}$ we measure the resistor voltage V_{R} is 1.115 v . Determine the time constant τ for the circuit.
2. For the diagram above, we determine that the time constant τ is 7.00 us. We assume that the switch has been in position A for a long time and moves to position B at $\mathrm{t}=0$. At a particular time after the switch has moved to position B , we observe that $\mathrm{I}=-9.1 \mathrm{~mA}$, and $\mathrm{V}_{\mathrm{c}}=0.725 \mathrm{v}$.
a. Determine what time these observations occur.
b. Solve for the capacitor value C .

3. For the figure above, find the indicated values and express the function $v(t)$ in equation form:

Find: Peak voltage V_{p}, peak-to-peak voltage $V_{p p}$, RMS voltage $V_{r m s}$, Period T, frequency f, angular frequency ω, time shift $\mathrm{t}_{\text {max }}$, and phase angle Θ.

4. For the figure above, find the indicated values and express the function $v(t)$ in equation form (be careful to note that the units for time on this graph are in 10^{-5} seconds).

Find: Peak voltage V_{p}, peak-to-peak voltage $V_{p p}$, RMS voltage $V_{r m s}$, Period T, frequency f, angular frequency ω, time shift $\mathrm{t}_{\text {max }}$, and phase angle Θ.
5. For the equation below, find $V_{p}, V_{p p}, V_{r m s}, T, f, \omega, t_{\text {max }}, \Theta$; and graph the function for $0<\mathrm{t}<5 / 16$ seconds. Remember to label you axes, units, and all relevant points on the graph. Hint: Try to keep your time divisions in terms of fractions rather than decimals, this will be easier to graph. This entire problem is easier without a calculator if you use fractions!

$$
\mathrm{v}(\mathrm{t})=25 \cos \left(8 \pi \mathrm{t}-30^{\circ}\right) \text { volts }
$$

