All the normal rules apply: Due next class, work on separate paper, start early, show your work, label everything, specify units, circle answers.

Remember there are three standard ways to express $\mathrm{A}=0$. In Boolean form they are $\mathrm{A}^{\prime}=!\mathrm{A}=\hat{\mathrm{A}}$. Read the notation carefully!

A "simple logic diagram" uses basic logic symbols.
A "fully labeled circuit schematic" shows the logic symbols, device part numbers, and pin numbers.
A Quad 2-input AND gate is a 74 HC 08 which has four 2-input AND gates on one chip. A Quad 2-input OR gate is a 74 HC 32 which has four 2 -input OR gates on one chip. A Hex Inverter, with 6 NOT gates on one chip, is a 74 HC 04 . Refer to your notes for pin assignments or use the internet to look up a spec sheet. Read the diagrams carefully!

1. From the given truth table below:
a. Write a Boolean equation in canonical form for the output F in terms of the inputs $\mathrm{A}, \mathrm{B}, \mathrm{C}$.
b. Draw a simple logic diagram (no need for device or pin numbers) for your equation from part a using 2-input AND and OR gates, and Inverters.
c. Reduce the original equation using Boolean algebra (as a sum of products you should end up with no more than 3 terms).
d. Draw a new simple logic diagram for your reduced equation from part c using Quad 2-input AND and OR gates, and NOT gates.

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

2. Construct a truth table for each of the following Boolean expressions (you may have to use some Boolean algebra, or try making a truth table column for each grouping, then a master F column).
a. $\mathrm{F}=\mathrm{A}^{\prime}+\mathrm{ABC}$
b. $\mathrm{F}=!\mathrm{ABC}+\mathrm{ABC}+\mathrm{AB}!\mathrm{C}$
c. $\mathrm{F}=\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}\right)\left(\mathrm{A}+\mathrm{C}^{\prime}\right)\left(\mathrm{B}+\mathrm{C}^{\prime}\right)($ Hint: make a column for each parenthetical phrase, then AND the three columns into a final F column)
d. $\mathrm{F}=\mathrm{AB}!\mathrm{C}!\mathrm{D}+\mathrm{ABC}!\mathrm{D}+!\mathrm{AD}+\mathrm{AD}$
3. Using the functions from parts a through \mathbf{c} in problem 2 above, draw simple logic diagrams to represent the boolean equations in their unreduced form.
4. For the logic function in problem 2d above: $\mathrm{F}=\mathrm{AB}!\mathrm{C}!\mathrm{D}+\mathrm{ABC}!\mathrm{D}+!\mathrm{AD}+\mathrm{AD}$
a. Draw and fully label a circuit schematic to realize the logic function (do not reduce). Use Quad 2-input AND and OR gates, and Hex Inverters, label all circuit components and pins.
b. Reduce the original equation using Boolean algebra - you should be able to get it down to 2 terms in "sum of products" form.
c. Draw and fully label a new circuit schematic for your reduced equation from part $5 b$ using Quad 2-input AND and OR gates, and Hex Inverters, label all circuit components and pins.
d. Given the choice, which circuit would you build - the original from part a or the reduced version from part c? Give at least two measurable reasons why, and quantify the difference.
