Decision Support Analysis for a Renewable Energy System to Supply a Grid-connected Commercial Building

Andrew Tubesing
New Mexico Tech
Electrical Engineering
December 1, 2009

Presentation

- Introduction to the project
 - Motivation & Context
 - Prior projects
- Project Breakdown
 - The Research Question
 - Characterizing the components
 - Analysis methods
 - Evaluation
- Conclusion, Contributions, Acknowledgements
- Q & A

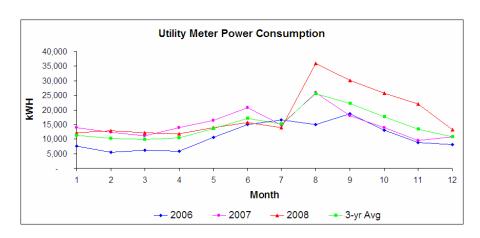
Project Introduction

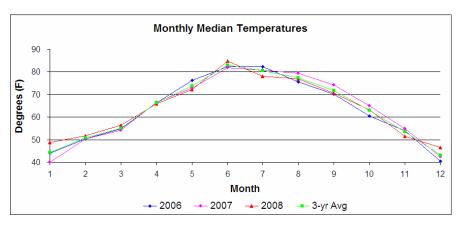
- Alternative energy
 - Particular interest: Using RES on-site in real time
 - Microgrid applications
 - Commercial vs. residential
- The Playas application
 - Unique situation: isolated town on its own branch (microgrid)
 - Desire to connect renewable energy sources (RES) to microgrid
 - Predict cost/benefit
 - Evaluate size/quantity of RES (particular source in mind)
 - Grid-connected building with high resolution data
- Decision support
 - Existing options
 - Custom solution

The Research Question

- How would a particular RES interact with the building's electrical load?
 - Command & Control Center
 - Diverse commercial load
 - Line-to-line 208 V_{RMS} 3Φ (120 V_{RMS} line-to neutral)
 - Emcore Concentrator Photovoltaic Array (CPV)
 - Alternate solar panel design
 - ~25 kW rating
- The key approach
 - Use limited known data to forecast source production, load consumption, and grid energy usage
 - Analyze power balance by the minute over a full year

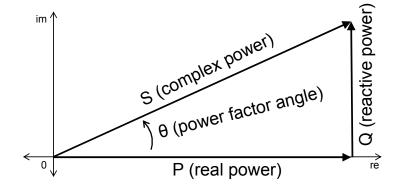
Characterizing the Components

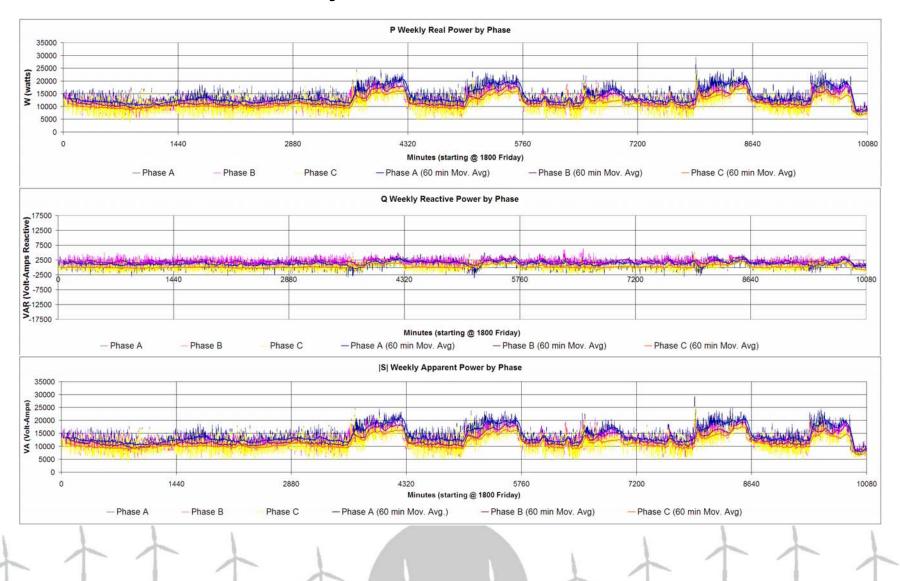

- Load
 - Preparing the data
 - Monthly billing history
 - One week of detailed real time data
 - Seasonal/weather considerations
 - Generating the annual load profile
- Source
 - Understanding the hardware
 - Preparing the data
 - One-day production test
 - Site data
 - Generating the annual source profile


Characterizing the Load

- Monthly billing history
 - Three years of monthly bills (real power only)
- One week of detailed real time data
 - Per-minute resolution
 - Voltage, current, frequency, real power, reactive power, apparent power, power factor, PF angle
 - Measured with GE Sub meter
 - Uses combination of voltage probes and current transformers
- Other related data
 - Site usage
 - Weather trends

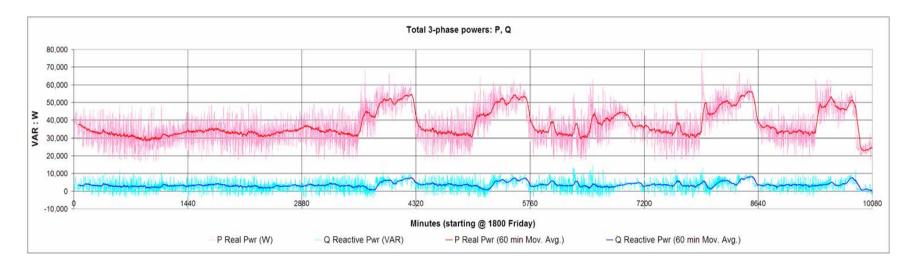
Load Monthly Data


- Annual power usage trends.
 - Peak & decline in summer 2008
 - Unsure if this is a trend or not (more data needed)
 - 3-year per-month average used for analysis
- Weather trends
 - Seasonal impact
 - No direct correlation with year-to-year load



Power Relationships

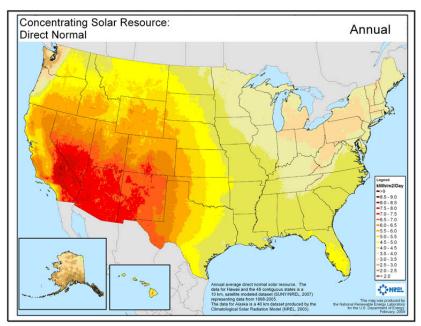
- P = real power
 - Electric utility meter measures P
 - Resistive component of load
- Q = reactive power
 - Not measured on utility meter
 - Inductive/capacitive component
- S = complex power
 - S = P + jQ
- |S| = apparent power
 - $|S| = sqrt(P^2 + Q^2)$
 - Represents magnitudes of real power plus reactive power exchanged
- θ = power factor angle
 - Represents phase shift between voltage and current
 - Power factor = $\cos \theta$
 - PF leading if $\theta < 0$ (I leads V)
 - PF lagging if θ > 0 (I lags V)



Load Weekly Per-Minute Data: S, P, Q

3-phase Total Real & Reactive Power

One week starting Fri 1800


- P and Q both peak during weekday daylight hours
- Real power very large compared to Reactive P >> Q
 - Minimal power factor angle. $\theta \approx 0$ (Avg = 7.69°)
 - Close to ideal power factor $PF \approx 1$ (Avg = 0.991)
 - Apparent power plot mimics Reactive almost exactly

Generating the Annual Load Profile

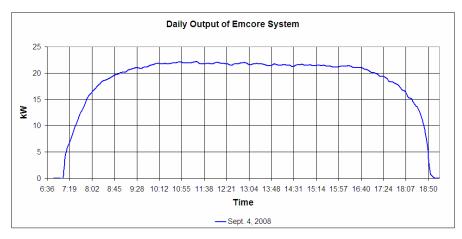
- Weekly per-minute profile normalized
 - Each minute's percentage of full week calculated
 - Week of minutes broken out into days
- Monthly profile generated for 2010
 - Constructed each month out of proper sequence of days
 - Averaged power bill into weekly portion
 - Each daily minute percentage multiplied by weekly power
 - Result is a minute-by-minute prediction of power usage for 2010

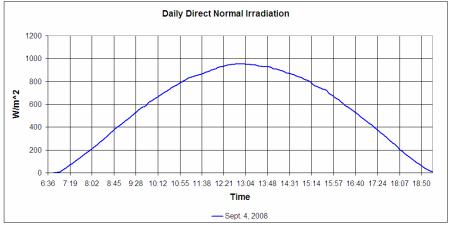
Characterizing the Source

- Understanding the hardware
 - CPV Specifications
- Characterizing the CPV
 - One-day performance test
 - Mathematical model
- Site Data for solar irradiation
 - Choosing the site
 - Preparing the data
- Generating the annual source profile

NREL: http://www.nrel.gov/gis/images/map_csp_us_10km_annual_feb2009.jpg

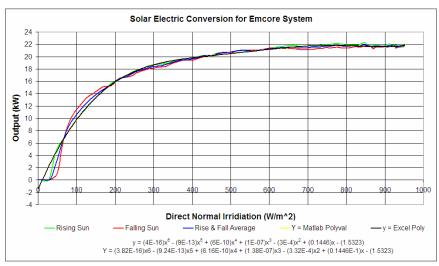
Hardware Specifications Emcore Concentrator Photovoltaic Array (CPV)

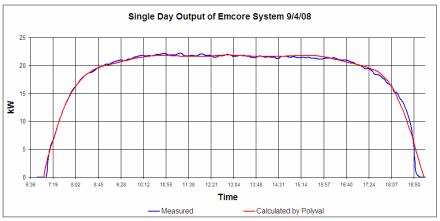



Specifications

- 60 x 26 feet19,000 pounds ~10 tons
- Uses Fresnel lenses to concentrate light 500x
- Electric current leaving PV cell keeps material cool
- Rated for 25 kW, achieves ~22kW in test cond.
- Temp dependence: ↑Temp ⇒ ↓ Production
 2% @ 122° F
 1.2% @ 104° F
 0.4% @ 50° F

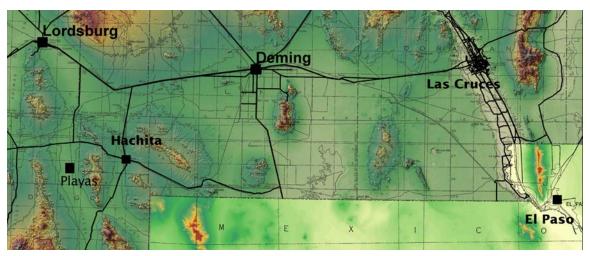
Characterizing the CPV


- One-day performance test
 - 22kw nominal output
 - Minimal output for indirect irradiation
- Solar data for test day
 - NWS @ Sunport
 - Direct irradiation



Characterizing the CPV

- Power output in kW as a function of solar irradiation
- Rising/falling sun averaged
- Least-squares polynomial fit
 - 6th order MATLAB polyfit vs Excel polynomial
 - Problems with output < 0
- Polyval used to re-construct daily output prediction based on test day solar data
- Mathematical model success
- Site solar data used for predictions



Site data for Source Characterization

- Predicting solar irradiation
 - Bird clear-sky model
 - Other hourly/monthly data sources
- Historical Data
 - Need high resolution
 - Most databases use hourly or daily averages
 - · Prefer one-minute resolution
 - Nearby collection sites
 - Several sites offer close to required resolution
 - Las Cruces
 - El Paso
 - Site map next slide

Playas Area Geography

New Mexico Bureau of Geology and Mineral Resources

Total Distance

Las Cruces: 108 mi
 El Paso: 125 mi
 Hachita: 12 mi

Latitude: N/S displacement

Las Cruces: 20 miEl Paso: - 8 miHachita: 0 mi

Elevation (Playas: 4498')

Las Cruces: 3940'
 El Paso: 3999'
 Hachita: 4524'

Site data for Source Characterization

- Las Cruces site chosen
 - Day length +/- 2 min on solstices, equal on equinoxes
 - Extra data for possible future use
- Complete year 1999 available
 - Daytime sun ~ 700-1000 W/m²
 - Quantities close to Bird Clear Sky Model
 - Slightly lower, as expected, accounting for clouds and other atmospheric conditions
 - Source files at 5-minute resolution, expanded to 1-minute resolution using linear interpolation
 - Stored in months of minutes, match file size of load data exactly
- Data contains per-minute direct solar irradiation values

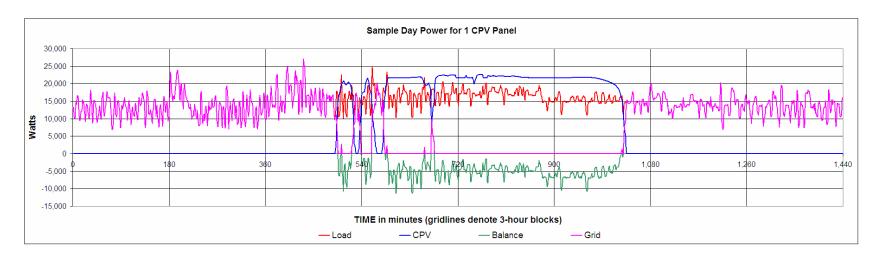
Generating the Annual Source Profile

- MATLAB used
 - Open monthly solar data file
 - Plug each minute's solar radiation value into polynomial using polyval function
 - Results are the expected CPV power output for each minute
 - Store resulting values into monthly production files
- Resulting files are the monthly predictions for minute-by-minute electric production from CPV
 - Negative values changed to zeros
 - Source is not consuming power, these are anomalies from polynomial error at low production

Analysis

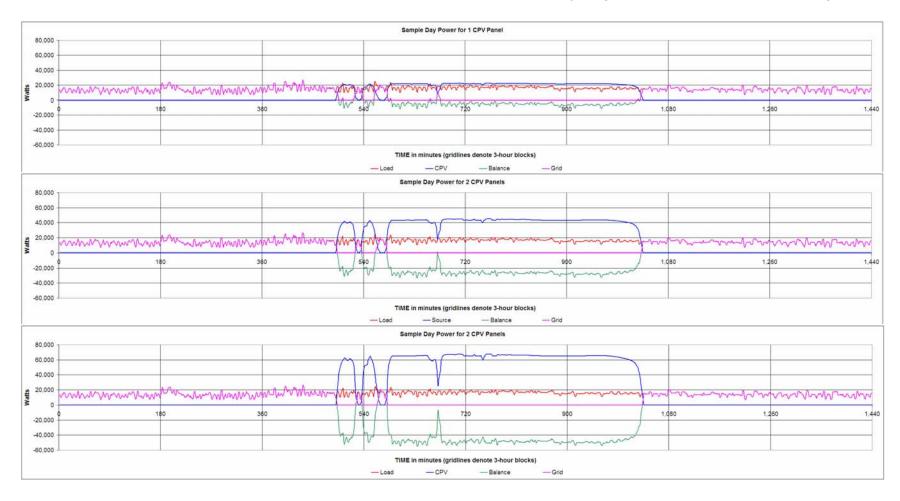
- Power balance
 - Compare load demand vs source production for every minute of a year
- Results
- Quantity of panels
- Evaluation spreadsheet

Analysis Computation


Power balance

- MATLAB used
 - Open each month's source and load data files
 - Perform mathematical power sum for each minute of the month.

(load power) – n(source power) = (balance)


- Store balance figure into new monthly per-minute power balance file
- Repeat for each value of n (n = number of panels)
- Balance is a positive or negative number
 - Positive result represents grid power used
 - Negative result represents surplus power generated
 - Can be net-metered back to grid, sent to microgrid, or stored locally

Power Balance for Sample Day (1 CPV)

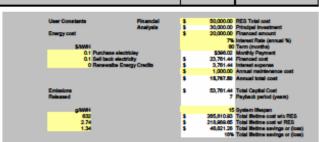
- Night: $P_{SOURCE} = 0$ $P_{LOAD} = P_{GRID}$
- Day: $P_{GRID} = P_{LOAD} P_{SOURCE}$ for $P_{GRID} \ge 0$
- Per-minute resolution benefit can be seen
- Green notes surplus energy generated
 - Net metering, microgrid supply, and/or storage potential

Power Balance for Sample Day (Multiple CPV)

Evaluation

- Spreadsheet
 - Display results and computations
- Samples
- Evaluation of results
- Comparison to other RES options

Evaluation Spreadsheet


- Excel used to evaluate power balance results
- Retrieve data
 - Power balance data
 - Separate positive and negative power sum balances
 - Sum separately for each month
 - Provides surplus power and grid power usage figures
 - Other existing data
 - Original monthly power bills for comparison
- Perform error checks
 - Compare monthly summaries from results to original monthly bills
- Input user constants
 - Power buy/sell/REC rates, maintenance costs, emissions, financing options, project lifetime
- Calculate financial & environmental quantities
- Compute lifetime figures for cost, savings

Evaluation Spreadsheet

Master Summary ::: 1 Panel

W-min	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total	W-min
Total Load Power Total RES Power	676,254,094 357,881,135	812,000,000 346,350,300	584,852,585 587,774,270	630,048,927 403,779,150	817,413,092 470,051,788	1,008,807,966 429,915,175	912,030,101 373,013,428	1,523,718,645 406,806,622	1,341,673,436 372,290,613	1,050,903,202 401,330,539	802,093,729 562,984,902	644,011,520 290,548,766		Total Load Power Total Source Power
Debt used from grid Surplus RES	395,403,926 (77,030,977)	341,596,737 (75,947,060)	320,716,496 (123,640,434)	328,134,173 (101,864,445)	401,400,235 (54,118,051)	014,929,505 (16,006,735)	504,792,391 (26,375,592)	1,117,934,007 (1,024,403)	972,260,202 (2,877,623)	673,009,463 (15,516,726)	480,227,957 (44,099,077)	423,042,159 (69,779,413)	6,017,409,015 (000,201,347)	Debt used from grid Surplus
Site-consumed RES	280,850,158	270,403,232	264, 133,835	301,914,705	415,932,937	413,900,441	347,237,836	405,784,219	309,413,190	385,813,810	330,005,025	220,769,353		Site-consumed RES
Load check source check	676,254,086 357,861,135	611,999,989 346,350,300	584,852,331 367,774,270	630,048,876 403,779,150	817,413,172 470,051,788	1,028,838,005 409,915,175	912,030,127 373,913,428	1,523,718,826 406,806,822	1,341,673,392 372,290,613	1,050,903,274 401,330,539	802,093,762 362,964,902	944,011,512 290,540,766	10,632,437,354 4,623,306,866	
WH	- an	Feb	Mar	Apr	May	Jun	M	Aug	Sect	Oct	Nov	Dac	Total	KWH
Total Load Power Total RES Power	11,271 5,965	10,200 5,773	9,746 6,463	10,501 6,730	13,024 7,034	17,147 7,165	15,301 6,227	25,595 6,760	22,301 6,205	17,646 6,689	13,366 6,363	10,744 4,842	177,207 77,055	Total Load Power Total Source Power
3-yr avg billed power % error	11,240 -0.27%	10,200	9,000 0.54%	10,480	13,640 0.12%	17,160 0.07%	15,120 -0.53%	25,800 0.80%	22,240 -0.55%	17,800 -0.27%	13,480	10,894 -0.40%		3-yr avg billed power % error
Debt used from grid Surplus RES	6,590 (1,264)	5,893 (1,298)	5,345 (2,001)	5,409 (1,090)	6,091 (902)	10,249 (267)	9,413 (440)	18,832 (17)	18,204 (48)	11,218 (258)	7,720 (735)	7,084 (1,183)	110,290 (10,138)	Debt used from grid Surplus
Site-consumed RES	4,001	4,507	4,402	5,002	6,932	0,090	5,767	6,763	6,157	6,430	5,648	3,679	66,917	Site-consumed RES
Load check Source Check	11,271 5,965	10,200 5,773	9,746 6,463	10,501 6,730	13,024 7,034	17,147 7,105	15,301 6,227	25,395 6,760	22,361 6,205	17,646 6,669	13,366 6,363	10,744 4,842		Power check Source Check
Net Metering Net XWR4 Savings XW84 Savings %	5,306 5,965 53%	4,427 5,775 57%	3,285 6,463 66%	3,771 6,730 64%	5,789 7,834 58%	9,982 7,165 42%	6,974 6,227 41%	18,615 6,780 27%	10,150 6,205 20%	10,960 6,569 36%	6,965 6,363 40%	5,901 4,842 45%	77.055	Net Metering Net 1994 Sevings 1994 Sevings %
Financial Cost IMM Income IMM Income RE Credits Nat	(128) - 531	589 (127) 440	535 (208) - 328	\$47 (170)	600 (60) 579	1,025 (27)	941 (44) - 097	1,003 (2) 1,002	1,620 (S) 1,616	1,122 (26) 1,098	772 (73) -	706 (116) 590	11,039 (1,014) 10,016	
Grid cost wio RES Sevings 5 Sevings %	1,127 590 53%	1,000 577 57%	975 640 66%	1,050 673 64%	1,362 763 58%	1,715 717 42%	1,520 623 41%	2,540 678 27%	2,236 620 20%	1,785 669 38%	1,337 636 40%	1,074 404 45%	7,706	Grid cost wio PES Savings S Savings %
Emissions kg Carbon Dicalde Suffer Dicalde Nitrogen Oxides	4,105 10 9	3,580 10 8	3,376 15 7	3,450 15 7	4,229 15 9	6,477 26 14	5,949 26 13	11,776 51 25	10,241 44 22	7,090 31 15	4,679 21 10	4,464 19 9	902	Einlesions kg Carbon Dioxide Sulfer Dioxide hittogen Oxides
Emissions wio RES kg Carbon Dioside Suffer Dioside Nitrogen Oxides	7,125 51 15	6,440 20 14	6,160 27 13	6,607 29 14	8,810 37 18	10,857 47 23	9,807 42 20	16,050 70 34	14,132 61 30	11,154 40 24	8,449 57 18	6,790 29 14	400	Emissions wio RES lig Carbon Dioxide Suffer Dioxide Nitrogen Oxides
Savings kg Carbon Dicaide Sulfer Dicaide Nitrogen Oxides	2,956 13 6	2,848 12 6	2,762 12 6	3,180 14 7	4,301 19 9	4,360 19 9	3,858 16 8	4,274 19 9	3,891 17 6	4,064 10 9	3,509 15 8	2,325 10 5	42,392 183 90	
Emissions credits kg (all RES) Carbon Dicuide Suffer Dicuide Nitrogen Oxides	3,770 16 8	3,640 16 6	4,085 18 9	4,253 16 9	4,951 21 10	4,536 20 10	3,835 17 8	4,285 19 9	3,921 17 6	4,227 18 9	4,054 17 9	000,0 13 6	211	Emissions credits lig (all RES) Carbon Disside Suffer Dicside Nitrogen Chides
Savings % w/o considering surplus RES considering all RES	6% 50%	44% 57%	60%	40% 64%	51% 58%	40% 40%	30% 41%	27% 27%	20% 20%	30% 30%	42% 40%	36% 67%	30%	Savings % eric considering surplus RES considering all RES

Evaluation results

- 1 panel
 - Can pay for itself with proper financing and advantageous renewable energy credit programs
 - Saves 50,000 kg of CO2 per year (55 tons)
- 2 panels
 - Not likely to pay for itself unless load increases moderately
 - Saves 100,000 kg of CO2 per year (110 tons)
- 3 panels
 - Couldn't possibly pay for itself unless load increases substantially
 - Saves 150,000 kg of CO2 per year (165 tons)
- In general, producing more power than can be used onsite has limited payoff.

Source Comparison for Equal Footprint

- 3 CPV Panels
 - 14 w/ft² of panel, panel >> cell size
 - 75 kW rating (.075 MW)
 - ~66 kW actual output (.066 MW)
 - \$750,000 ⇒ \$11.36 per watt
- Traditional PV panels
 - 468 100w panels @ 10w/ft²
 - ~46.8 kW (.046 mW)
 - \$468,000 ⇒ \$10.00 per watt
- Utility Wind Turbine
 - 1.6 MW rating
 - ~1.0 MW actual output
 - \$1,500,000 \Rightarrow \$1.50 per watt
- For twice the money WTG provides 10x power capacity of CPV.

Conclusion / Future direction

- Load predicted
 - Satisfactory results
 - More per-minute data will create better annual profile
- Effective mathematical model for source
- Means to evaluate lifetime cost/benefit
- Analysis
 - Automation would allow for simpler adaptation to new or alternate input data
- Evaluation
 - Automation for data input
 - Accommodating tiered rate structures
- Confirmation
 - Time will provide more data to evaluate how close the estimates came to actual values

Contributions

- Power quality analysis
- High resolution power balance
 - Per minute vs hourly or daily averages
- Characterization of unusual source type
 - CPV vs traditional PV
- Additional revenue programs
 - REC
- Environmental analysis

Acknowledgements

- Graduate/Thesis advisor
 - Dr. Kevin Wedeward
- Graduate Committee
 - Dr. Aly El-Osery, Dr. Bill Rison
- NMT EE Faculty
 - Thanks to all
 - Chair: Dr. Scott Teare
- Technical resources
 - Wes Helgeson, IERA
 - Mark Mansell, NM Bureau of Geology & Mineral Resources

Q & A

- Thank you
- Questions from general audience

Closed session with committee