Wind Power

An Overview of Utility-Scale Wind Power Production & Distribution

Andrew Tubesing NMT Electrical Engineering April 23, 2009

Overview

- Introductory Topics
 - General Power Facts
 - Power Grid Overview
- Wind Power Topics
 - Wind Power Facts
 - How Wind Energy Works
 - Building a Wind Farm
 - Wind Farm Site

Power Facts

- Electrical power measured in Watts
- Consumption is measured in KWh
- 1 KWh = 3412 BTU = 1 hour's use of:
 - microwave oven
 - ten 100w light bulbs
 - medium stovetop burner
 - three computers
- 1 MWh = 1000 KWh
 - 1 average home for 1 month

Power Facts

- Typical utility-scale wind turbine generates 1.6 MW
 - Equivalent to ~2000 hp of diesel generation
 - 4 tractor/trailers, 1 small tug boat, or 1000 homes
- Ten turbines = 16 MW
 - 10,000 homes,
 - At nominal speed: 1 train (10,000 tons) or 1 large cargo ship (100,000 tons)

Power Grid Overview

- Components:
 - Generation
 - Transmission
 - Sub-transmission & Collection
 - Distribution
 - Load

- Technical Issues
 - Stability
 - Power Flow
 - Daily wind/load variations
 - Spinning Reserve
 - Power Quality
 - Fault Protection
 - Distribution of components

Grid Components

- Generation
 - Typically generated at \leq 15 KV
 - Types:
 - Hydro (water/gravity turbines) Hoover Dam = 2000 MW
 - Coal (steam turbines) 2 KWh/kg, 6MW/ton
 - Nuclear (steam turbines) 1000 MW
 - Diesel (direct drive generator) 1000hp = 750KW
 - Solar (photovoltaic) 75MW plant \$300M (\$4M/MW)
 - Wind (wind turbines) 1.6 MW ea, \$1.5M ea = \$1M/MW

Grid Components

- Transmission
 - Transport of large amounts of power from one location to another
 - Typically transmitted at high voltage
 - 345 KV, 230 KV, 120 KV
 - Transmitted power $P = I * V \qquad \uparrow V \rightarrow \downarrow I$
 - Dissipated power $P = I^2 * R \qquad \downarrow I \rightarrow \text{smaller}$ conductors and/or less power loss
 - AC is most common, but there is some DC transmission
 - Conductors can not be assumed ideal, real wire properties become part of system model
 - Resistance
 - Impedance (capacitance & inductance)

Grid Components

- Sub-transmission & Collection
 - Intermediate voltage
 - 120 KV, 40 KV, 20 KV
 - Collects generators together
 - Substation levels for distribution
- Distribution
 - From substation to neighborhood or industrial consumer
 - 13.3 KV, 8.3 KV, 4.8 KV
- Load
 - Where business & residential power is consumed
 - 480 V, 240 V, 208 V, 120 V

Grid Technical Issues

- Stability & Power Flow
 - Generation must keep up with demand
 - Load, generation & distribution balancing throughout grid
 - Steady & Transient state
- Energy resource variations
 - wind production vs other types
 - Nuclear, coal, hydro, solar, diesel
 - Spinning Reserve

Grid Technical Issues

- Power Quality
 - Voltage stability
 - +/- 5% (per unit .95 to 1.05 times nominal)
 - $\theta > 0 \rightarrow V \downarrow$ (inductive, lagging), $\theta < 0 \rightarrow V \uparrow$ (capacitive, leading)
 - Frequency & harmonics
 - Flicker
 - Power Factor
 - Phase shift θ between voltage & current $\theta = \theta_v \theta_i$
 - Power Factor = $\cos \theta$ leading or lagging
 - $\theta > 0 \rightarrow V \downarrow$ (inductive, current lags voltage),
 - θ < 0 → V ↑ (capacitive, current leads voltage)
 - Complex power $P_{inst} = P + jQ = real + reactive power$
 - Ideal Q = 0 for $\cos \theta = 1, \theta = 0$.
 - Reasonable +/- 10% PF lead/lag
 - Example & Demo

Wind Power Topics

- Wind Power Facts
- How Wind Energy Works
- Building a Wind Farm
- Wind Farm Site

- Small Scale Wind Power
 - Typically generated by consumers
 - Uses generators of 1KW or less
 - Does not serve as sole power source
 - Requires energy storage and/or grid separation system
 - Can take advantage of Net Metering

- Medium Scale Wind Power
 - Single utility-scale turbine can power a college campus
 - Provides 30% of peak load power, 100+% during min load
 - 1.65 MW max, 1.0 MW typical output at 600 VAC, 3-phase, 60 Hz
 - Functions in 8 to 29 mph winds
 - Adjusts to campus avg power factor of ~.9 lagging (+25°)

- Large/Utility Scale Wind Power
 - Typically generated in Wind farms
 - High Net Energy Gain (18 vs. 5 for solar)
 - Low Capacity factor (30% vs. 95% Nuke)
 - High space-to-energy ratio (20x coal)
 - High green factor, low natural cost

World's largest producers by gross production and percentageof wind vs. other forms (as of 2008)

- Total Production:
 - Germany 22 GW
 - USA 17 GW
 - Spain 15 GW
 - India 8 GW
 - China 6 GW
 - World Total 74 GW

- Penetration Ratio:
 - Denmark 18%
 - Spain 9%
 - Portugal 9%
 - Germany 6%
 - Ireland 6%
 - World Wide 1%

- Typical 1.6 MW turbine
 - Generates reactive power (requires reactive compensation)
 - Can power ~ 1000 homes or a small college
 - Produces energy for ~ 4¢ per KWh
 - Displaces 1800-3000 tons of CO_2 annually
 - Kills less than 5 birds per year

- Typical 1.6 MW turbine
 - 400 ft tall (25 story building) weighs
 >200 tons
 - Tower: 250 ft, 115 tons
 - Nacelle: 50 tons
 - Blades: 140 ft, 10 tons
 - Rotor: 300 ft dia, 43 tons (hub & blades)
 - Costs \$1.5 million, 20-yr life span
 - @ 30% capacity factor & retail of 10¢/KWh
 - generates \$420K/yr
 - 4 year capital payback
 - 6 month energy payback

- Wind is air flowing from high to low pressure
- Created by trade winds, jetstream, local meterological phenomena
- Affected by topography, cloud cover, surface texture, uneven heating
- Energy is extracted in Boundary layer between upper atmosphere and Earth surface

WIND RESOURCE OF THE UNITED STATES

- Wind speed increases with altitude (shear)
 - Taller turbines for more energy resource & distance from surface disturbances
- Power in the wind
 - Power density = $\frac{1}{2} \rho A U^3$
 - Function of swept area and wind speed cubed
- Betz's Theory
 - Maximum energy extraction is 59.3%
 - Determined by maximizing power extracted while minimizing wind obstruction
 - Lift vs. Drag
 - Old windmills use drag/friction devices, new turbines use wings
 - Lift requires wind penetration of blade plane

Betz versus Schmitz

- Optimal configuration is 3-blades on horizontal axis
- Maximizes power coefficient while minimizing tip speed
- Reduces noise and increases aesthetic tolerance

- Critical issues:
 - Site assessment
 - Land use and availability
 - Permits
 - Transmission
 - Buyer
 - Financing

- Site Assessment
 - Wind Resource
 - Site-specific, terrain dependent
 - Evaluated over 1-5 years
 - Meteorological towers, LIDAR, data from NOAA and other sources
 - Wind Rose
 - Absolute power requirement (avg w.s. > 16 mph)

- Land use & availability
 - Land owner issues
 - Compensation (typically \$3-5k/yr per turbine)
 - Single owner sites easier to coordinate
 - Multi-owner sites generate competition for compensation
 - Agricultural compatibility
 - Proximity to population & habitat
 - Accessibility

- Permits
 - Local, state, federal jurisdictions
 - Code ambiguity: Structure or machine?
 - Public acceptance (NIMBY & PIMBY)
 - Environmental/wildlife impact
- Transmission
 - Proximity to transmission/distribution network
 - Quality/compatibility/capacity of network
 - Existing infrastructure
- Buyer
- Financing

- Turbine
 - Structural Components
 - Blades/Hub/Rotor
 - Nacelle
 - Tower
 - Rolled plate steel, thicker for taller tower
 - 13 ft max width
 - Foundation
 - Spreadfoot: 6' deep x 40' dia, 300-400 yd³ concrete
 - Tubular cylinder: 30'deep x
 - 4' thick x 16' OD

- Turbine
 - Mechanical Components
 - Rotor Blades
 - Fiber shell over mechanical armature
 - Wing shape for lift, skew
 - Root & root bearing
 - Rotor Hub & Spinner
 - Pitch control, hydraulic or electric
 - Drive Train
 - Gearbox typically 50-100 : 1
 - Converts low-speed high torque to high speed low torque
 - Direct drive designs use gearless large rotor/stator with many poles
 - Pumps (cooling & lube oil)
 - Yaw & Pitch motors (typically electric drive)

- Turbine
 - Electrical Components
 - Generator four types (next slide)
 - Transformer
 - Steps up from < 1 KV to collection voltage (10-35 KV)
 - Mounted in nacelle or at base of tower
 - Down cables
 - DLO cables
 - Twist issues
 - Controls
 - In base, nacelle & rotor
 - Sensors for machine & environment
 - Constantly optimizing production for existing winds and power quality

Turbine

- Four main generator types
 - 1/A. Fixed Speed (synchronous)
 - Speed maintained by controlling blade pitch
 - Limited control of slip and power quality 1-3%
 - Consumes reactive power, requires/includes cap bank
 - 2/B. Limited Variable Speed (synchronous)
 - Greater control of slip and power quality ~10%
 - Consumes reactive power, requires/includes cap bank
 - 3/C. Variable Speed with Partial Scale PE Converters (asynchronous)
 - DFIG / DFAG
 - Most common type sold currently
 - More control of slip 50%
 - Can control VAR to self-compensate for power factor
 - ~30% of machine power uses power electronics converters
 - 4/D. Variable Speed with Full Scale PE Converters
 - Next generation upcoming
 - 100% slip control
 - Full VAR control for complete power factor compensation
 - 100% of machine power uses power electronics converters
 - Can utilize any motor type, including direct drive

Installation

- Collection System
 - Interconnect between turbines and substation
 - Collector/feeder circuits ~35 KV
 - Cabling issues
 - Underground vs overhead
 - Underground preferred for aesthetics
 - More expensive, better protection, larger cable size
 - Soil Rho
 - Gounding/bonding

- Substation
 - Interface between wind farm and grid and/or transmission lines
 - Collector circuit breakers & buses
 - Transformers (grounding and intermediate step-up/down between 34.5 KV and 115, 138, 165 KV)
 - Reactive Compensation
 - Capacitor banks: ~ 5 || caps per Φ , ~10 to 50 uF total, 50-600 KVAR
 - Reactor: 1 inductor per Φ, ~315 mH, 120 Ω, 35 KV @ 10MVAR
 - STATCOM/DSTATCOM
 - Uses inverter to synthesize variable under/over voltage to compensate for PF
 - V_{inv} > V_{util} \rightarrow looks like capacitor, compensates for inductive PF
 - V_{inv} < V_{util} \rightarrow looks like inductor, compensates for capacitive PF
 - Multiple sources stacked to add more compensation (switchable)
 - Power electronics technology is expanding capabilities (thyristors)
 - Transmission output
 - Grid/transmission interconnect

Collector Breakers & Transformers

Collection Bus Breaker & Substation Bus

Reactor

Reactor & Cap Banks

DSTATCOM

Substation-transmission interconnect

Transmission Line

Transmission Connection

Main Breaker

Thanks

- Dr Kevin Wedeward
- University of Wisconsin Madison

References

- Banner image: www.horizonwind.com
- Images, tables, figures: *Fundamentals of Wind Power Plant Design,* University of Wisconsin
- Transportation images: Lake Superior Warehousing Co. Inc. www.lswci.com
- Installation images: http://stolafturbine.blogspot.com/, Pat Kelly
- Turbine/Farm photos: Andrew Tubesing

Questions...

