- Homework is due at the beginning of class
- Start early and get help if you need it
- Show all work neatly and clearly; redraw and/or rewrite problem if needed as work turned in should stand alone
- Identify your answers (with units) using a box or circle
- Staple multiple pages together

Following the development and design of the 4-bit digital-to-analog converter (DAC) in class, perform the following for a 3-bit DAC.

- 1. Draw a 3-bit (3-input), two op-amp, summer circuit that will operate as the DAC. Use a binary, 3-bit input $(a_2 \ a_1 \ a_0)_2$ and analog output v_o .
- 2. Analyze the circuit to solve for the output v_o in terms of a_2 , a_1 , a_0 and resistors.
- 3. Assume your binary/digital signal will be based on 3.3V logic (logical $0 \leftrightarrow 0$ V, logical $1 \leftrightarrow 3.3$ V), and that you want your output voltage v_o to range between 0V and 6V.
 - (a) Find the constraint on the values of the resistors.
 - (b) Draw the input/output (I/O) table showing all combinations of the 3-bit input $(a_2 \ a_1 \ a_0)_2$ along will corresponding output v_o of the DAC.
 - (c) Find the resolution of the DAC.
 - (d) What is the minimum number of bits needed to achieve a resolution less than $0.1\mathrm{V?}$