- Homework is due at the beginning of class
- Start early and get help if you need it
- Show all work neatly and clearly; redraw and/or rewrite problem if needed as work turned in should stand alone
- Identify your answers (with units) using a box or circle
- Staple multiple pages together
- 1. The circuit shown below is known as a transimpedance amplifier or current-to-voltage converter. Using ideal assumptions about the op-amp's behavior, solve for the following:
 - (a) output voltage v_{out} in terms of R and i_{in} ,
 - (b) gain $\frac{v_{out}}{i_{in}}$ in terms of R, and
 - (c) largest magnitude of input current, $|i_{in}|$, that can be applied before the output saturates assuming supply voltages of $\pm V_S = \pm 12$ V and resistor R = 1.2k Ω .

- 2. Consider the noninverting amplifier shown in Figure 8.12 on page 641, and use ideal assumptions about the op-amp's behavior in your analysis. Solve for the following:

 - (a) output voltage V_{out} and gain V_{out}/V_{in} in terms of resistors R₁, R₂,
 (b) output voltage V_{out} and gain V_{out}/V_{in} using specific values given for resistors R₁, R₂, and
 - (c) largest magnitude of input voltage, $|V_{in}|$, that can be applied before the output saturates assuming supply voltages of $\pm V_S = \pm 15$ V and specified values for resistors.

- EE 101
 - 3. Given the circuit shown and ideal assumptions about the op-amp's behavior, solve for the circuit's output voltage v_{out} and gain $\frac{v_{out}}{v_{in}}$.

- 4. An input signal that ranges between 0V and 50mV needs to be amplified to the range 0V and 5V.
 - (a) What gain is needed to perform the desired amplification?
 - (b) Given you have op-amps and resistors of values $1k\Omega$, $9.9k\Omega$, $10k\Omega$ $99k\Omega$ and $100k\Omega$ design an op-amp-based circuit that can perform this amplification. Note some of the circuits you analyzed above may make good options.