Date, Time and Location: Monday, December 16 from 6pm-9pm in Workman 101.

Resources Allowed: Calculator, writing/erasing utensils and one 4"× 6" index card with writing on both sides.

Chapters and Sections Covered: 1-6, 8.1, 8.2

Note: All work must be shown neatly and completely for full credit.

Topics:

- 1. Circuit Variables
 - Voltage, current, power, energy
 - Passive sign convention
 - Definitions, units and physical interpretations

2. Circuit Elements

- Resistors, capacitors, inductors
 - Symbols
 - o Units
 - Voltage-current relationships
 - Physical interpretations/characteristics
 - Independent and dependent sources
 - Symbols
 - Voltage-current relationships
 - Operational amplifiers (op-amps)
 - o Symbol
 - Ideal op-amp assumptions
- 3. Circuit Analysis Tools
 - Use to analyze circuits and find variables of interest
 - Reduction by equivalent elements
 - Kirchhoff's Voltage Law (KVL)
 - Kirchhoff's Current Law (KCL)
 - Voltage and current division
 - Nodal analysis
 - Mesh analysis
 - Thévenin and Norton equivalent circuits
- 4. Ramp, Step, and Impulse Functions
 - Definitions and relationships
 - Graph \Leftrightarrow equation
 - Use in circuit analysis
- 5. Circuits with Energy Storage Elements
 - Switching via switches or step functions
 - Initial conditions
 - Differential equation(s) needed for variable of interest using circuit analysis tools
 - Solve differential equation for total response (natural plus forced)
 - Interpret results in terms of type of response (1st-order: real exponential, 2nd-order: over damped, under damped, critically damped), time constants, frequency of oscillation, attenuation and phase shifts
- 6. Complex Numbers
 - Rectangular to polar conversion
 - Calculations
 - Graphs