Date, Time and Location: Tuesday, May 13 from 1:30pm-4:30pm in MSEC 103.

Resources Allowed: Calculator, writing/erasing utensils and one 8.5"×11" sheet of paper with writing on one side.

Chapters and Sections Covered: 8, 9.1-9.3, 10, 11.1-11.3

Note: All work must be shown neatly and completely for full credit. Laplace Transform table will NOT be provided, make sure to include it on your sheet of paper.

Topics:

- 1. Circuit Analysis Techniques
 - mesh current, KVL, node voltage, KCL, Thevenin/Norton equivalent circuits, reduction, voltage and current division
- 2. Complex Numbers
 - rectangular ⇔ polar
 - sketch in complex plane
- 3. Sinusoids
 - definition including amplitude, frequency, and phase
 - common trig identities (Euler's formula, sum of angles, sine + cosine to cosine)
- 4. Sinusoidal and Damped Sinusoidal Analysis (steady-state)
 - development ((damped) sinusoids \rightarrow complex exponentials \rightarrow phasors)
 - phasors, phasor diagrams, impedances, complex frequency
 - convert circuit to frequency-domain representation
 - circuit analysis to find transfer functions, impedances, outputs, poles/zeros, or Thevenin/Norton equivalent circuits
- 5. Power
 - average power for sinusoids and general periodic signals
 - effective/rms value of periodic signals
 - maximum power transfer, apparent power, power factor, and complex power for circuits in sinusoidal steady-state
- 6. Frequency Response
 - transfer function magnitude and phase responses, and how they relate input and output sinusoids
 - half-power and resonant frequencies
 - sketch magnitude and phase responses
- 7. Bode Plots
 - understand basis (power, logarithms, dB)
 - sketch asymptotic approximation
 - sketch what "true" response might look like using Bode plot as guide
 - interpret plots as relationship between input and output sinusoids
- 8. Laplace Transform
 - $f(t) \Leftrightarrow \underline{F}(s)$ using definition, partial fraction expansion, and table
 - solve differential equations
 - convert circuit to frequency-domain representation
 - circuit analysis to find transfer functions, outputs, impedances
 - relate to steady-state results