EE342

Date/Time/Room: M 05/08/2000 from 06:00pm-09:00pm in Weir 208

Items Allowed During Exam:

- One 8.5" x 11" sheet of paper with writing on both sides.
- Writing utensils, erasers, and calculators.

Items Provided During Exam:

- Continuous-time Fourier Transform properties and pairs from textbook.
- Z-transform properties and pairs tables from textbook.
- Integral and summation tables from textbook.

Potential Topics:

- 1. DT Signals
 - construction via sampling CT signal
 - sampling theorem, Nyquist sampling rate
 - ideal and practical sampling results (time, frequency, and reconstruction)
 - time and frequency relationships between CT signal, ideally sampled signal, and practically sampled signal
 - common signal definitions (δ(t), δ[k], u(t), u[k], rect(t/W), rect[k/W])
 - periodicity test, nonuniqueness of DT sinusoids, combination signals (time-scaling, timeshifts, etc.)
- 2. DT Systems
 - difference equation model (discretize differential equation, solve via recursion or ztransform, construct from TF, solve for zero-state and zero-input responses)
 - transfer function model (DTFT or ZT, construct from difference equation, solve for zerostate response given TF and input, use to characterize system)
 - convolution sum model (solve for zero-state response via sum)
 - system properties (causal, linear, time-invariant)

3. DTFT

- $f[k] \Leftrightarrow F(\Omega)$
- plot and interpret magnitude and phase spectra plots

4. DFT

- $f[k] \Leftrightarrow F_r$
- plot and interpret magnitude and phase spectra plots
- relate to DTFT and CTFT (including effects of aliasing and time-truncation)
- basics of FFT algorithm

5. ZT

- $f[k] \Leftrightarrow F[z] \Leftrightarrow F(\Omega)$
- solve for system outputs given difference equations with initial conditions, convolution model, or TF; characterize system via TF
- 6. Digital Filtering
 - bilinear transformation
 - simple filter design
- 7. DSP System
 - anti-aliasing filter, sampling, reconstruction (methods and anti-imaging filter), DFT for frequency information