
EE-382 Junior Design

Final Report
May 9, 2000

Submitted to:

New Mexico Tech

Electrical Engineering Dept.

Dr. S. Bruder

And

Dr. K Wedeward

Submitted By:

Design Team 1

L. Noice

H. Vahle

J. Mares

E. Szpindor

EE 382 Final Report

i

Table of Contents

1.0 Introduction……………………………………………………………..1

2.0 System Overview………………………………………………………1

3.0 System Control Subsystem……………………………………………8

4.0 Power Subsystem…………………………………………………….14

5.0 Motion Control Subsystem…………………………………………..17

6.0 Sensory Subsystem………………………………………………….19

7.0 Cost Summary………………………………………………………..33

8.0 Initial Operating Capabilities………………………………………...34

List of Appendices

Appendix 1………………………………………………………Source Code

Appendix 2…………………………………..Schematics and PWB Artwork

Appendix 3……………………………………….GP2D120 Characterization

Appendix 4……………………………………..Sodium Vapor Spectral Data

EE 382 Final Report

ii

List of Figures
FIG. 1 System Mission Flow …………………………………………………………….2

FIG. 2 Resource Allocations …………………………………………………………….4

FIG. 3 Printed Wiring Board Summary …………………………………………………5

FIG. 4 Location of Main Assemblies …………………………………………………....8

FIG. 5 Function Block Diagram ………………………………………………………….9

FIG. 6 Closed-loop Speed Control Algorithm Block Diagram ……………………….10

FIG. 7 Wall Following Algorithm Block Diagram ………………………………………11

FIG 8 Fire Location Algorithm Block Diagram ………………………………………..13

FIG. 9 Power Distribution Block Diagram ………………………………………………16

FIG. 10 Motion Control subsystem………………………………………………………17

FIG. 11 Placement of distance sensors…………………………………………………21

FIG. 12 TF of Sensor 9……………………………………………………………………22

FIG. 13a&b White line sensor…………………………………………………………….24

FIG. 14 Flame Sensors……………………………………………………………………29

List of Tables

Table-1 System Level Requirements……………………………………………………..2

Table 2– System Control Requirements………………………………………………….9

Table 3 - Power Subsystem Requirements……………………………………………..14

Table 4 - Power Budget……………………………………………………………………15

Table 5 Cost Summary…………………………………………………………………....33

Table 6 Initial Operating Capabilities (IOC) Summary………………………………...34

EE 382 Final Report

1

1.0 Introduction

1.1 Scope

The document starts with a System Overview to familiarize you with the requirement

the drove the final design. Then each subsystem is described in detail including

theory of operation for respective electronic circuits. This is all followed by a

description of the robot’s Initial Operating Capabilities (IOC). The last two sections of

the document provide a cost summary followed by conclusions and lessons learned.

Following the text sections of this document are appendices that include circuit board

schematics and artwork as well as mechanical drawings.

1.2 Purpose

The purpose of this document is to provide a complete technical description of

“Vader’s Pet”.

2.0 System Overview

The requirements for this project were governed in part by the rules of the International Fire

Fighting Competition held annually at Trinity College. Additional requirements were place on

the design by the Electrical Engineering Department at New Mexico Tech. The added

requirements were to mandate that all motion control must be closed-loop and utilize, at a

minimum, proportional control. In addition to these requirements the design team self-

imposed addition requirements. The self-imposed requirements facilitated the team’s goals

to produce a design that would successfully pass optional challenges in the competition for

the purpose of gaining a competitive advantage. The two specific optional challenges that

drove the projects design requirements were the use of ramps and furniture. A simplified

function block diagram of the system mission is provided in FIG. 1.

EE 382 Final Report

2

FIG. 1 System Mission Flow

2.1 System Level Requirements and Design Goals

The requirements were allocated to logical subsystem with a few remaining that affect

the design as a whole. These system level requirements are listed in Table-1. The

robot was required to operate un-tethered and autonomously. The nature of the

project lends itself to the use of optical sensors. However, the sensors must have a

high level of immunity to a verity of lighting conditions that may have the ability to

interfere with proper sensor operation. Additional environmental considerations include

temperature and humidity for both New Mexico and Connecticut where the

international competition takes place. Maintainability and safety were given extremely

high priority throughout the design process.

Table-1 System Level Requirements

Description Requirement Goal
Navigation and Control autonomous
Spectral Noise Immunity fluorescent/sodium vapor
Operating Temperature 50° to 100° F
Operate Humidity (non-condensing) 0 to 95%
Auto Start 3.5 kHz tone
Design for Reliability and
Maintainability X
Designed for Safety X

Locate Flame
within Room

Remote Start
Room Search

for Flame

Extingish
Flame
Mode

Return Home
Mode

EE 382 Final Report

3

2.2 Function Description of Subsystems

The system was divided into the following four logical subsystem:

1. System Control Subsystem

2. Power Subsystem

3. Motion Control Subsystem

4. Sensory Subsystem

 The System Control Subsystem is responsible for the hardware and software

integration of the Motion Control Subsystem and Sensory Subsystem. The subsystem

consists of two primary elements: an embedded micro controller and its associated

code.

The Power Subsystem includes the power source, associated voltage regulation, over

current protection, filtering, and power distribution.

The Motion Control Subsystem consists of those components and circuits that provide

locomotion for the robot. Specifically this subsystem includes two compact dc motors

and their associated gear heads as well as the optical encoder attached to each motor

that are used for velocity and acceleration feedback. This subsystem also includes the

power amplifier circuits to drive the motors.

The Sensory Subsystem is a myriad of sensors used to avoid collision with obstacles,

detect white lines, detect flames, provide high resolution direction information to direct

the robot to the flame, and extinguish the flame.

EE 382 Final Report

4

2.3 Allocation of Resources

To facilitate the research, design, develop, and testing of the four subsystems

mentions above, specific responsibilities were assigned to the team members. In

addition to the tasks related to the four subsystems, additional efforts were required for

the packaging design and general system engineering responsibilities. After a review

of each team member’s strengths and interests, each member agreed to specific

responsibilities to contribute to the overall design. These assignments are

summarized in FIG. 2.

FIG. 2 Resource Allocations

System
Engineering
E. Szpindor

Packaging
Design
E. Szpindor
(H. Vahle)

Power
Subsystem
J. Mares

System
Control
Subsystem
H. Vahle
(L. Noice)

Sensory
Subsystem

 L. Noice
(J. Mares)

Fire Suppression
Subsystem

 L. Noice

Motion Control
Subsystem

 H. Vahle

EE 382 Final Report

5

2.4 Printed Wiring Board Summary

Good engineering practices determined the placement of assemblies on the robot.

Analog signal lines were kept as short as possible and they were kept separated from

inherently noisy or digital lines. Several printed wiring boards (PWB’s) were

manufactured to accommodate required electronic circuits. The same principles used

to determine the placement of assemblies determined the grouping of circuits on the

PWB’s. Three PWB’s were designed and fabricated for this project. The majority of

components used on these boards were surface mount. The decisions to use surface

mount parts facilitated small boards. The relationship between the circuits on each

board, the sensors, fire extinguisher, and embedded controller are shown in FIG. 3.

FIG. 3 Printed Wiring Board Summary

Starting in the upper left-hand corner of FIG. 3, the embedded controller consists of a

modified Motorola HC12 evaluation board. The modifications include an Altera 7128

PLD. This part is programmed to have two 16-bit counters that are used to count one

Embedded
Controller
(HC12)

Fire Detector/Fire
Suppression PWB

Power Amplifier PWB

Adapter PWB

Fire
Sensor

Fan

WL
Sensor

Distance
Sensors

Motor
Assembly

Fire
Senso

r
Amp.

Fan
Control

Tone
Decoder

WL
Amp.

Power
Amp.

Power
Supply

SPI A/D

16-bit x 2 Counter

Encoder

EE 382 Final Report

6

of two encoder output lines per motor. The encoders used are quadrature encoders;

however, there was no requirement to determine whether the robot was moving

forward or backward. Additional details on motion control are included in the sections

that follow. Encoder signal were transparently passed through the Power Amplifier

PWB to facilitate the use of a single wiring harness to connect lower layer of the robot

to the upper layer.

Continuing the discussion by moving to the right to the blue block tilted “Adapter

PWB”, the Adapter PWB is the first of three boards designed for this project. The

purpose of the Adapter is to provide a reliable interface from the embedded controller

to the electronic circuits of the robot. All signals to and from the embedded controller

pass through the Adapter with the exception of the encoder signals as mentioned.

The Adapter PWB is a mezzanine board by design and it plugs into the embedded

controller board. The Adapter board compensated for the poor I/O design of the HC12

evaluation board by providing robust connectorized I/O and distributing ground to each

connector to accommodate separating signal lines by ground lines in cables and cable

shields if necessary. The Adapter also includes an ADC used to digitize signal from

distance sensors, which are used for collision avoidance. This ADC provided

additional ADC channels beyond those inherent to the HC12 to accommodate the 11

channels required for this design. The unique feature of this ADC is its glue-less serial

interface to the HC12. The ADC is designed to use the Motorola trade marked SPI

(Serial Peripheral Interface) for communication to the controller.

In the upper right-hand corner of FIG. 3 is the second board designed for this project.

It is again shown in blue and it is called the “Fire Detection/Fire Suppression PWB”.

This board holds three groups of circuits. The first circuit, a Tone Decoder, detects

and conditions a 3.5KHz tone used for starting the robot remotely. The second circuits

amplification of signal from the Fire Sensor Subassembly. The last circuit on this

board provides an optically isolated control line to turn on and off a fan motor used to

extinguish the fire.

EE 382 Final Report

7

The last board designed for this project is located in the lower central portion of FIG. 3.

It is called “Power Amplifier PWB”. This board consists of three mutually exclusive

circuits. The first circuit is a power amplifier that provides direction control and the

current necessary to for the motor to deliver the required torque. The next circuit is the

robots power supply. This circuit connects to the power source and provides over

current protection and voltage regulation as well as functioning as a single point

ground for the system. The final circuit implemented on this board provides signal

conditioning and amplification for the White Line Sensor Subassembly.

2.5 Locating Assemblies

As stated above, the placement of assemblies was chosen for ease of integration;

moreover, the placement was chosen to reduce affects of EMI/RFI as will as

inductively coupled noise. This becomes increasingly important due to our overall very

small design and the close proximity of components. These efforts appear to be quite

successful; hence, after hours of testing, no anomalies or degraded of functionality

were detected. Furthermore, no shielded cables were used except to connect the

“Fire Detection/Fire Suppression PWB” to the fire extinguishing fan motor. FIG. 4 can

be used to see the placement of all major assemblies on the robot.

EE 382 Final Report

8

FIG. 4 Location of Main Assemblies

3.0 System Control Subsystem

3.1 Overview

This section contains information about the main flow of the software and the variables

and algorithms used in the navigation of the robot through the maze and its search for

the candle. Additional information on the software interface to specific subsystems is

found in the following sections of this document.

EE 382 Final Report

9

The basic requirements were to navigate through a maze, find a small fire (a lit

candle), navigate to the candle, and then extinguish the candle. Additional,

requirements are shown in Table 2.

Table 2– System Control Requirements

There were self-imposed requirements for the robot. For example, tone start, furniture

avoidance and return home. At this time, the robot has the basic set requirements

with one self-imposed requirement; tone start. The function block diagram in FIG. 5

shows the approach taken to initially approach the coding problems. Refer to

Appendix 1 for the complete print out of the code used.

FIG. 5 – Function Block Diagram

Wide Angle
Search Mode

Tone start
Room Search

Mode
Flame

Detected?

NO

Narrow Angle
Search Mode

Extingish
Flame
Mode

Return Home
Mode

YES

Description Requirement Goal
Search Reliability search all rooms
Navigation no dead reckoning
Navigation Technique sensory feed-back center of hall/doorways
Motion Control closed-loop
Max Speed 2 ft/s
Max Torque transverse ramp
Avoid Obstacles > 4"
Max Range Before Fire Suppression > 12"
Return Home After Fire Suppression avoid rooms shortest path

EE 382 Final Report

10

3.2 Remote Start

Once the code is downloaded into the robot and the code is run, registers and

interrupts are setup. After completing the initial setup, the program enters a tone

detection subroutine where it will remain until a tone is detected. A high on PP6

indicated that a tone has been detected. The program checks for a high on this pin

twice in 5ms in order to limit the possibility of other sounds setting the robot off. If it is

the correct signal then variable ts is set high which allows the program to jump out of

the loop and enter the main subroutine.

3.3 Speed Control

The main subroutine is where the robot gets its instructions to activate the motors and

brings them up to a desired speed using the following algorithm:

lduty = (KL*DS)/100 + KPL*(DS - lms); //Dutycycle for channel 0

rduty = (KR*DS)/100 - KPR*(DS - rms); //Dutycycle for channel 1

FIG. 6 – Closed-loop Speed Control Algorithm Block Diagram

FIG. 6 is a block diagram of the Closed-loop Speed Control algorithm. DS is the

desired speed or max speed of the robot. Lms and rms are the measured speed from

EE 382 Final Report

11

the 16-bit encoder counters, these values are in terms of encoder counts. The

measured speed is determined by the RTIF interrupt interrupting every 2ms and

reading the information from 16-bit counters programmed in the Altera 7128 on the

HC12 Evaluation board. KPL and KPR are the constants gain terms used to

determine the rate at which the algorithm compensates for errors. KL and KR are the

open loop gain constants of the motors, which are multiplied with the desired speed to

get a desired duty cycle.

3.4 Left Wall Following

Once the motors are started, the robot will left wall follow using the following algorithm;

lduty = (KL*DS)/100 -(KWL*(DS_3 - s3))/10; //Dutycycle channel 0

rduty = (KR*DS)/100 + (KWR*(DS_3 - s3))/10; //Dutycycle channel 1

FIG. 7 – Wall Following Algorithm Block Diagram

FIG. 7 is a block diagram of the wall following algorithm. DS_3 is the desired distance

from the wall for the robot and s3 is the measured distance (from Sharp sensor) from

the wall. KL*DS and KR*DS are the desired speed for the motors. KWL and KWR are

the constant gain terms that determine the rate at which the algorithm responds to

errors. The main part of the program will run until it either sees:

EE 382 Final Report

12

1. A wall in front of the robot, in which case it turns right.

2. An opening on the left, in which case it will turn left.

3.5 Right Turn

If the robot sees a wall in front of it, it will go into the turn_right subroutine. This in turn

will apply a high to PP2 which will reverses one motor. Then using the 16-bit counters

the robot will track how many encoder counts to a predetermined count and then stop.

Then PP2 will be set low to set the motor back forward and then the robot will continue

with the room search.

3.6 Left Turn

If the robot sees an opening to the left it will make a left turn using the following

algorithm;

lduty = (KL1*DS1)/100 + (KPL*(DS1 - lms))/10; // DC channel 0

rduty = (KR2*DS2)/100 - (KPR*(DS2 - rms))/10; // DC channel 1

This is similar to the left wall following algorithm except that KL1*DS1 and KR2*DS2

are for a slower turn. After the robot has made the left turn it will continue with left wall

following. At the same time the robot is looking for a white line which indicates that it

has entered a room. Upon seeing the white line the code will go to the STOP_ROBOT

routine.

3.7 Stop

In the STOP_ROBOT routine, the robot will come to a stop by applying a low to PP4

and PP5, which applies a dynamic brake on the “Power Amplifier PWB”. Then the

code samples the four fire sensors 16 times and then takes the average of each

sensor. The code then takes all four averages and sums them and compares them to

CAL_SUM, which is a calibrated threshold level of the light from a candle in the largest

EE 382 Final Report

13

room. If the sum of the four sensors is lower than the CAL_SUM, then there is no

candle located in the room. If the candle is not in the room the robot will make a 180°

turn. The 180° turn is accomplished by changing the direction of the right motor. This

is done by applying a high to PP2, which will reverse the motor. The robot uses the

16-bit counters to track the encoder counts to a predetermined amount. Then setting

PP2 low to switch the right motor to the forward direction will continue left wall

following.

3.8 Fire Scan

Once the robot has found a candle in the room, it goes into the FIRE_SCAN

subroutine. This subroutine will guide the robot to the candle. The algorithm for this is

similar to the one used for wall following, but instead of using the sharp sensors it uses

the data from the two center flame sensors to guide the robot towards the candle. The

algorithm is presented below, and block diagram is shown in FIG. 8.

lduty = (KL*DS)/100 - (KWL*(centerL_sensor - centerR_sensor))/10;

rduty = (KR*DS)/100 + (KWR*(centerL_sensor - centerR_sensor))/10;

FIG 8 – Fire Location Algorithm Block Diagram

EE 382 Final Report

14

While traveling towards the flame, the robot will be looking for the white line

surrounding the candle. Once it arrives at the white line in front of the candle, the

program will instruct the fan to turn fan for 5 sec. At which time the flame will be

extinguish.

3.9 End_of _Game

At the end of the 5 sec., the fan is turned off and the program then goes to a

end_of_game routine. Once in this sub-routine, the program is in an infinite loop until

the HC12 is reset.

4.0 Power Subsystem

4.1 Overview

The Power Subsystem consists of a power source and associated circuitry that

provides over current protection and voltage regulation. The circuit also functions as a

single point ground for the system. The requirements for the power subsystem are

shown in Table 3, and the system power budget is shown in Table 4.

Table 3 - Power Subsystem Requirements

Description Requirement Goal
Power Source Battery
Power Source Availability & Versatility standard cell sizes

Charger Availability & Versatility standard cell COTS
Capacity (w/ operator intervention) one day (10 trials)
Capacity (w/o operator intervention) 6 minutes
Power Source Current exceed sum of all surge

and average current
requirements

Equipment and Personnel Safety over-current protection,
and design w/ margin

Power Supply Voltage(s) match all subsystem
voltage(s)

EE 382 Final Report

15

Table 4 - Power Budget

4.2 Primary Power Source

The system power source is a battery pack consisting of eight AA size cells. Nickel

Metal Hydride rechargeable batteries were selected for their high current density of

1500 mAH. With eight 1.2 V cells connected in series, the total voltage of the battery

pack is nominally 9.6 volts.

4.3 Circuitry

This battery pack is connected to an on/off switch that is in turn connects to the “Power

Amplifier PWB” on J4. The schematic for this board is in Appendix 2 page 1. The 9.6

V line is passed through re-settable fuse F1, filtered by bypass caps C3 and C4, and

applied to power amplifiers U1 and U2. After filtering, the 9.6V line is also connected

to a voltage monitoring circuit who’s output is fed to the HC12 via J5. This interface

allows the HC12 to determine when batteries should be replaced. The voltage

monitor circuit is a set of resistors used to divide the voltage and limit the current to a

range acceptable for the HC12’s internal A/D converters. Finally, the 9.6 V line feeds

a voltage regulator circuit that provides 5 V for distribution throughout the robot. The

regulator, U3, is a 7805 capable of delivering 500 mA. The output of the voltage

regulator is connected to the “Adapter PWB” via J7. Power is distributed to all 5V

AVG. (mA) Peak
(mA)

250 5

Motors 2 800 2300 9
Encoder 2 16 5

1 63 9
3 43 5
1 90 5
4 50
1 53
1 986 9
1 20 N/A

Total 2371 4671

SUBSYSTEM DESCRIPTION QTY.
REQ.

Assy., Distance Sensor
Assy., White-Line Sensor

Motion and System
Control Subsystem

Fire Suppression
Subsystem

Assy., Fire Detection Sensor

Fan Motor

Voltage
(V)

Fire Suppression/Fire Extinguishing Board

Sensory Subsystem

Adapter Board

Current

Assy., Embedded Controller
Assy., Motor

Assy., Power Amplifier Board PWB

EE 382 Final Report

16

subsystems from the “Adapter PWB”. The power distribution to other subsystems is

shown in Figure 9.

FIG. 9 – Power Distribution Block Diagram

4.4 Charge/Discharge Characteristics

This robot has a 2-hour operation life, which is defined as a 2V drop with respect to full

charge. The battery charger has a quick charge mode that recharges all eight

batteries in approximately 1.5 hours. The battery change is not integrated into the

robot. Two battery packs are used such that a charged pack is always available.

4.5 Fan Power

The fan motor is powered from a separate 9V alkaline battery. The decision to use a

separate power source for the fan motor was based on a desire to reduce the load on

SW1- PWR
ON/OFF

8NiMH
Batteries

White line
Sensor

Maxon
Motors

Power
Supply

Fire
Detection

Distance
Sensors

Fan
Motor

Power
Amplifier

5V
7805

9.6V
HC12

9V
Battery

Tone
Decoder

EE 382 Final Report

17

the primary power source. Voltage is applied to the motor through an optically isolated

relay controlled by a logic line from the System Controller (HC12).

5.0 Motion Control Subsystem

5.1 Overview

One of the requirements of the design was to have a closed loop Motion Control

Subsystem. The design uses differential drive. The Motion control subsystem is made

up of 3 major components; the Embedded Controller Assembly, the Maxon Motor

Assembly, and the Power Amplifier Assembly as shown in FIG. 10. The Maxon Motor

Assembly is shipped from the factory as one unit, but it consists of a motor, gear head,

and encoder.

Embedded
Controller
Assembly

(Modified HC12 Eval.)

Maxon Motor
(2)

Maxon Gear
Head

(2)

Maxon
Encoder

(2) Feed Back

Power
Amplifer
Assembly

PWM

FIG. 10 – Motion Control subsystem

5.2 Signals and Circuits

The HC12 generates two Pulse Width Modulation (PWM) signals; one for the left

motor, and one for the right motor. The signals are called PWM_IN_A and

PWM_IN_B. The PWM_IN A&B signals are output on I/O pins PP0 and PP1

respectively. The two signals connect to the “Power Amplifier PWB” on J1 pins 6 & 10

after passing through the “Adapter PWB”. The Power “Amplifier PWB” schematic can

be found in Appendix 2 page 1. PWM_IN A&B connect to pin 6, the /ENABLE input, of

U1 and U2 respectively. U1 and U2 are Allegro A3952SLB full-bridges. The /ENABLE

inputs are used to pulse width modulate the high current drive to the two motors. The

output pins 10 & 15 of U1 and U2 are connected to J2-1 & 6 and J3-1 & 6 respectively.

EE 382 Final Report

18

J2 and J3 connect to the Maxon Motor Assemblies using a ribbon cable that is part of

the Motor Assemblies.

The encoders on the motors provide a quadrature output (two signals 90 deg out of

phase) with 16 counts per shaft revolution. It was not necessary in this design to use

the quadrature information, so only one of the two encoder signals is used per motor.

With the motor turning, the encoders send a pulsed signal back up the ribbon cable to

J2-3 ENCODE_A and J3-3 ENCODE_B on the “Power Amplifier PWB”. The

ENCODE_A & B signals simply pass through this board and exit on J1 pin 1 and 9

respectively. The ENCODE_A & B signals are brought to the HC12 Evaluation

board’s J1 pin 19 and 20 respectively after passing through the “Adapter PWB”. J1 pin

19 and 20 connect to an Altera 70128 PLD mounted on the HC12 Evaluation board.

The Altera part is programmed with two 16-bit counters; one for the left motor, and one

for the right motor.

The Motion Control part of the software running on the HC12 samples the two 16-bit

counters every 2ms reading memory mapped registers on the Altera 7128. The count

values are used to determine how fast/slow the robot is going. The motion control

algorithm uses this information, as discussed in the System Control section of this

document, to adjust the PWM and maintain a desired speed. This gives the robot

closed loop motor control.

In addition the phase pin of the Allegro part on the “Power Amplifier PWB” is used to

control the direction of the motors. This signal is used to perform 180 degree turns

when entering a room and finding no candle. The brake function was also used on the

Allegro part to provide rapid stops and minimize overshooting of white lines.

One of the unusual things about the Allegro A3952SLB was that the output of the chip

was inverted from the input. This caused a 100% duty cycle applied to the input of the

Allegro part to be output as 0%, so this had to be taken in to account when adjusting

the PWM signal.

EE 382 Final Report

19

6.0 Sensory Subsystem

6.1 Tone Detector Subsystem

The robot has the ability to be started remotely. To accommodate the International

Fire Fighting Robot rules, the remote start functionality was implemented using a 3.5

kHz tone detector. The tone detection circuit consists of a microphone, an amplifier, a

commercially available tone decoder. The tone decoder selected was a National

Semiconductor LM567. The part requires external components to set the center

frequency and the bandwidth of the sweep oscillator. The initial values of the external

component selected for a desired fc = 3.5 kHz and BW = 10% * fc using equations

from the manufacturers data sheet. After tuning, the actual values used varied slightly

to account for component tolerances and stray reactance in the circuit layout. The

circuit was incorporated into the “Fire Detection/Fire Suppression PWB”, and the

schematic can be found in Appendix 2 pg. 4

6.2 Distance Sensor Subsystem

6.2.1 Hardware

One of the most important aspects of this project is being able to navigate

through the maze. In order to do this, reliable distance sensors needed to be

attained. After reviewing other distance sensor technologies, the GP2D120

was the down-selected sensor. The GP2D120 were made available to this team

as well the entire junior design class due to the efforts of Herald Vahle’s

research last summer.

Seven sensors were used for obstacle avoidance to include walls and furniture.

The arrangement of the distance sensors is shown in FIG.11. Only three were

used for navigation (Sensors 3, 4 and 5). The remaining sensors (Sensors

EE 382 Final Report

20

1,2,6 and 7) were intended to provide additional information for furniture

avoidance. This feature was not fully implemented through in the robot’s IOC.

The output of the distance sensors could be fed directly into the HC12’s A/D

without signal conditioning. However, the HC12’s internal A/D has only six of

eight channels available. As a result, an external ADC was used to digitize the

seven distance sensors. The GP2D120s were nicely packaged, and they are

specified to run on a 5V source at 50ma. These sensors have an indeterminate

region between zero and three centimeters that requires specific attention. An

effective way to remove this anomaly is to offset each sensor three centimeters

from the edge of the robot.

Sensor placement every 45° provides symmetry and nearly 360° coverage. S3

and S5 were chosen as opposed to s2 and S6 for navigation because outputs

from sensors placed at 45° change less rapidly than sensors placed at 90° for

the same change in distance and time. This effectively smoothes the output of

the left and right navigational sensors. Another feature to placing the left and

right navigational sensors at 45° is that it gives the sensors the ability to

effectively see ahead. This allows the robot to navigate faster thought the maze

because it allows the robot the anticipate turns.

The darkened sensors are the ones used for navigation. Each sensor was

numbered from 1 thru 7 starting from left to right. Doing this helped keep track

of the sensor values through software.

EE 382 Final Report

21

FIG. 11 - Placement of distance sensors

Since the transfer function of each sensor is unique, they were completely

characterized and the results can be seen in Appendix 3 page 1. Although only

seven sensors were used, nine sensors were characterized. The measured

transfer function for each sensor is plotted against the manufactures

characteristic transfer function for each sensor, and the entire data set is

available in Appendix 3 page 1. One sensor was not used because its transfer

function deviated grossly from the manufacture’s characteristic curve as shown

in FIG. 12. A second sensor was not used because it was unstable in nature.

EE 382 Final Report

22

FIG. 12 – TF of Sensor 9

The data obtained from this characterization was used to match the transfer

functions (TF) of complimentary sensor pairs such that:

1. TF S3 ≈ TF S5,

2. TF S2 ≈ TF S6,

3. TF S1 ≈ TF S7.

The same data was also used to determine threshold values used in software to

maintain desired distances from objects.

6.2.2 Software

Since the robot is only eight inches in diameter, keeping it five inches away

from walls allows it to always be centered in hallways and doorways. In order

to do this, the data collected from the hardware characterization of the sensors

EE 382 Final Report

23

was used to determine software threshold values that correspond to a five inch

distance. These threshold values were in A/D bit counts and were applied to

the motion control algorithm described in the system control section of this

document.

Although the original design goals were to include furniture avoidance, the

software portion of this functionality was not implemented in the IOC.

6.3 White Line Sensor Subsystem

6.3.1 Hardware

One of the most important functions that the robot must be able to do is to

detect white lines. The home base is the white circle from where the robot starts

each run. Additionally, a white line is placed at each doorway, and a white line

is placed around the candle.

The white line sensor must be immune to noise sources that include false

detection from debris on the maze floor and spectral contamination from

ambient lighting conditions. The immunity to false detection of debris was

accomplished by manual calibration by adjusting the gain of a non-inverting

amplifier. The immunity to spectral contamination was achieved by the over

mechanical design and placement of the white line sensor.

The first technique employed to reduce contamination from ambient light was to

place the white line sensor in the center of the robot. This provides an eight-

inch aperture block for the sensor. Added benefits to placing the white line

sensor in the center of the robot include:

1. When a doorway white line is detected, the robot is protruding halfway

into the room. This allows the flame detector to not have its aperture

blocked by the doorway itself, thus providing a wider field of view to the

flame detector.

EE 382 Final Report

24

2. When the robot detects the white line surrounding the candle, the robots

flame suppression assembly is four inches closer to the flame than if the

white line sensor was placed at the leading edge of the robot.

The second technique employed to reduce contamination from ambient light

was the mechanical packaging of the white line sensor. The photo emitting and

photosensitive areas of the sensor are placed 0.2” from the floor. Placing it in

a black tube reduces the field of view of the photo detector. In addition, the

geometric relationship between the photo-emitter and photo-detector are set

such that the angle of incidence to the floor is equal to the angle of reflection

from the floor at a sensor height of 0.2”. This configuration is shown in FIG. 13.

Finally, the placement off the floor, reducing the field of view of the detector,

and angular relationship between the detector and emitter combine to reduce

the possibility of contamination by ambient light to near zero.

The design used a PN168 phototransistor and a red LED, which were housed in

a piece of milled clear lexan. The driver circuit for the emitter and signal

conditioning for the detector were placed on the “Power Amplifier PWB” (See

Appendix 2 page 1).

FIG. 13a - White line sensor

EE 382 Final Report

25

The emitter’s anode was connected to J8 pin-4 that connects it to VCC through

a 47Ω resistor used for current limiting (light intensity).

The phototransistor’s collector was connected to VCC through J8 pin 1. The

phototransistor’s emitter is current limited by a 100KΩ resistor and connected to

U6 via J8 pin 2. U6 is a non-inverting amplifier with an adjustable gain. The

gain was adjusted such that when the robot was over a white line, the output of

the op-amp was over 4V and when the white line sensor was not on a white line

a voltage below 1V was read. The output of the op-amp was connected to an

I/O port on the HC12. The gain of the op-amp was high enough to trigger the

TTL I/O port of the HC12 such that no threshold devices were required for the

interface.

The above design worked great. The white line sensor was able to be adjusted

such that all debris was ignored. The white line sensor was tested in a room

FIG. 13b - White Line Sensor

EE 382 Final Report

26

that had a lot of wax drippings in it. The white line sensor designed passed with

flying colors by never detecting the wax and best of all, the white line sensor

was able to work in different lighting conditions. Because of the careful design

of the white line sensor and its associated circuitry, the software implementation

was simplified.

6.3.2 Software

The output of the white line sensor was fed to PT0 on PORTT. The RTIF was

used to detect when PT0 was asserted. Once this bit was asserted, this would

set the white_line variable high in the main while loop where the motion control

code resided.

Once a white line has been detected, two other conditions must be met in order

for the robot stop on doorway white line or a candle white line.

Normally, when the white line variable is asserted, this indicates that we’ve

entered a room or have detected the white line surrounding the candle. Either

of these two conditions should immediately stop the robot. However, two other

conditions need to be taken into consideration because they will cause the

robot to stop prematurely. The two conditions are:

1. Falsely detecting the home base at the beginning of run as a white

line to a doorway.

2. Falsely detecting a white line when leaving a room.

The following algorithm was used to detect a white line taking in account of the

two conditions mentioned above.

if (white_line == 1 & line_startl == 1 & line_startr == 1)

{

EE 382 Final Report

27

stop_robot(); // White line detected, stop robot

}

The variable line_start1 handles the first condition. False detection occurs at

the beginning of the run when the robot is set down on the home base. It

interprets the home base as a white line and thinks it has entered a room. To

avoid this situation, line_startl bit was initialized low. While this bit is low, the

white line will be ignored until this bit is set high. The only time that the

line_startl bit is set high is when we make the first left turn and stays set high

throughout the duration of the run.

The variable line_startr handles the second condition. False detection occurs

after the robot detects a doorway white line and has determined that there is no

fire in the room, the robot is programmed to make a 180° turn to search for the

flame in the next room. Once the robot completes the 180° turn, it is still over

the white line causing the robot to think it has gone into another room. To

resolve this situation, the variable line_startr is used. This bit is initialized high

and after the robot completes a 180° turn, the bit is pulled low. With the bit

pulled low, the robot will ignore white lines until it makes a clockwise 90° turn.

Once it has completed the 90° turn, line_startr is pulled high which prepares the

robot to look for the next white line.

This technique worked extremely well, and it is repeatable on every test run.

6.4 Fire Sensor and Fire Suppression Subsystem

6.4.1 Hardware Fire Sensor

One of the main features that the robot must be able to do is that it must be

able to accurately detect a flame in each of the four rooms. Much research was

done to figure out which sensors would be the best to detect a flame. The best

EE 382 Final Report

28

sensors to detect a flame were the ultraviolet sensors. These are the ideal

sensors because they are oblivious to ambient lighting, but the drawback to

these sensors is that they are expensive. The other sensors of choice are the

cheap infrared (IR) sensors.

It was decided that the IR sensors would be implemented for this project. There

are a variety of IR sensors. To decide which sensor would be the best one for

this project research was done on the lighting conditions that the robot would be

operating under. The two lighting conditions that were of concern was the light

emitted from HPS lamps and the light emitted from the florescent lights.

To figure out the affects of these lighting conditions, a spectral graph was

attained (See Appendix 4). From this graph, it was learned that florescent light

has about a 470nm wavelength and the HPS lights have a wavelength in the

range of 570nm to 620nm. Taking this into consideration helped narrow down

which IR sensors to use. The Panasonic PN168 NPN Phototransistor has a

peak sensitivity wavelength at 800nm. This was way out of the spectral range

that was of concern and this was the sensor implemented for this design.

The PN168s have a +/- 30º field of view measured at the 3dB point. To

determine if a flame is present in a particular room one would like to have a field

of view greater than 180º. Beyond the requirement for a wide field of view for

flame detection, the robot must be able to accurately determine the direction to

the flame. These two requirements lead to two specific modes of operation for

the flame detector assembly. The designers called the two modes: wide-angle

mode, and narrow-angle mode. Four PN168s were used to accommodate

these two distinct modes of operation. The detailed discussion below identifies

the differences between the two modes.

The phototransistor bias circuit and signal amplification circuitry is located on

the “Fire Detection/Fire Suppression PWB”. For a schematic of this design,

EE 382 Final Report

29

please refer to Appendix 2 page 4. Each PN168s was implemented the same

way. A 100? resistor was connected from the emitter to ground, the output was

taken off the emitter and fed to a non-inverting op-amp with an adjustable gain,

and the output of the op-amp was then fed to an A/D channel in the HC12.

Wide Angle

The wide angle search mode is a mode that enables the robot to search the

entire room to determine if there is a fire in the room. To implement this design

using PN168s, four PN168s were used as mentioned. The configuration of

PN168s is shown in FIG. 14. Four PN168s were used because each PN168

has a half intensity beam width of 30º or a total beam width of 60º.

FIG. 14 – Flame Sensors

The self-imposed requirement was to have the robot position itself halfway into

a doorway and quickly determine if there was a fire in the room without having

to sweep the room to detect a fire. Positioning the robot halfway into a doorway

is simplified by having the white line sensor assembly located in the center of

the robot. Using four PN168s, equally spaced provides an aggregate sensor

with a resulting field of view in excess of 220º. Certainly a challenging aspect

to this design is the packaging of the sensors.

Narrow Angle

The narrow angle search mode is a mode that enables the robot to pinpoint the

exact location of the flame in the room. The design goal was to provide high

EE 382 Final Report

30

angular accuracy and resolution with the PN168s and without the use of optical

techniques to reduce the field of view.

To implement this design, a nulling technique was used. Since the beam

pattern of a single PN168 was known, two PN168s were positioned such that

there was a small overlap between the half angle/half power point creating a

sharp null between them. This sharp null would allow the robot to precisely

determine the exact location of the candle, while combined the two sensors

have a field of view in excess of 120º.

The uniqueness of this design is that wide angle phototransistor were used to

quickly acquire and maintain high-accuracy and high-resolution angular

direction to the flame. No optical techniques were needed on the

phototransistor or the flame detector sensor assembly as a whole to reduce the

field of view for better angular resolution or to block out ambient light.

6.4.2 Software Fire Sensor

Wide Angle Mode

Once the robot has entered a room, the robot enters a wide scan mode.

Sixteen samples are taken from each phototransistor and the average value is

computed. By averaging 16 samples per phototransistor, noise fluctuations are

reduced by a factor of 4. This value is compared real-time to a threshold value

called, CAL_SUM. If the current measured average is greater than CAL_SUM,

then a fire is detected. Otherwise, no fire is present and the robot enters the

room search subroutine to look for a fire in a different room. This technique

worked really well and detected a flame every time. The CAL_SUM value was

determined by placing the robot in the largest room with the candle placed in

the furthest corner. The robot then takes samples under current lighting

condition. Again 16 samples per phototransistor are collected and averaged.

The average is stored in the variable CAL_SUM.

EE 382 Final Report

31

Narrow Angle Mode

Once the robot has determined that there is a fire present in the room, it will go

into a narrow angle mode. This mode will find the exact position of the candle

so that the robot can quickly and accurately move to the flame.

Only the two center fire sensors are used to find the flame. From here the

value of the left center sensor is subtracted from value of the right center.

When the difference of those two is negative, the left center sensor is seeing

more light that the right center sensor, so robot will veer left. The opposite it

true as well. When the difference of the sensors is negative, the right sensor is

seeing more light than the left, and so the robot will veer right. When the

difference of the two is equal to zero, then the two sensors are seeing an equal

value and the robot will track straight.

6.4.3 Hardware Fire Suppression

Once the robot has successfully detected a flame and is ready to put it out, the

robot must have a reliable fire extinguisher to put out the flame. There are

many different ways to put out a flame. After reviewing the many different

possibilities, a 9V DC motor with an airplane propeller blade was down

selected. Although it is not practical to put out of fire by trying to blow it out, this

was the method of choice since the fire the robot had to put out was only a

small flame.

There are many benefits to using the fire extinguisher selected. The 9V DC

motor used in this design was small, powerful, and implementing it through

hardware was simple. An airplane propeller was easily installed onto the motor,

with the only drawback being that the propeller had to be positioned vertically

before each run or it would block the fire sensors.

EE 382 Final Report

32

Since the 9V motor only draws about 1A, an external 9V battery was added to

power the 9V DC motor. Doing this would take off some of the power drain to

our main batteries and would alleviate any noise caused by this noisy motor.

In order to drive the fan, an optically isolated relay was chosen. Using this relay

would reduce the circuitry and would prevent any EMI produced from the DC

motor from entering other circuitry. An I/O pin from the HC12 was connected to

pin 3 of the optical relay. When this pin was pulled high by the I/O pin from the

HC12, the motor would turn on, when pulled low, the motor would be turned off.

The full implementation of this design was can be seen on the “Power Amplifier

PWB” (See Appendix 2 page 1).

The 9V DC motor with the attached propeller proved to be an effective fire

suppressor. The 9V battery was able to provide enough power to the DC

motor, and the propeller used was able to provide enough air flow that such it

provided a ±15° angle of extinguishing. With the combination of the accurate

fire detection subsystem and effective fire suppression subsystem, the fire was

put out on every trial.

6.4.4 Software Fire Suppression

Once the robot has detected a flame, driven up to the flame and has stopped

on the white line surrounding the candle, the robot is ready to turn on its fire

extinguisher.

To do so, as mentioned, the output of PT3 is fed to pin 3 on the optical relay.

Once the white line surrounding the candle has been detected, PT3 is then set

high for approximately five seconds using a simple delay subroutine. This

causes the fan to stay on long enough to extinguish the flame. Once the period

of five seconds is up, PT3 is then set low and the fan turns off. As mentioned

above, because of the reliability of the fire sensors and fire extinguisher, no

EE 382 Final Report

33

other code was needed to compensate for the event that the robot failed to put

out the flame.

7.0 Cost Summary

In general, the majority of components used on this robot have been donated by the team

members or vendors/manufacturers. The design team stayed well below the $100.00

department budge. Most of the expenditure accrued on the department account were from

the Instrument Shop and included expendable material. Table -5 is a summary of the cost

incurred on the project as well as value the of donated material.

Table 5 - Summary of cost

A1 Assy., Embedded Controller $0.00 1 $130.00 $130.00
A2 Assy., Motor $0.00 2 $108.00 $216.00
A3 Assy., Power Amplifier PWB 1 $11.51 $11.51 1 $16.00 $16.00
A4 Assy., Tail Wheel 1 $1.50 $1.50 $0.00
1 Drive Wheel 2 $1.00 $2.00 $0.00
A1 Assy., Distance Sensor $0.00 7 $8.00 $56.00
A2 Assy., White-Line Sensor $0.00 1 $4.00 $4.00
A3 Assy., Fire Detection Sensor 2 $5.18 $10.36 2 $2.00 $4.00
1 Adapter PWB 1 $11.51 $11.51 1 $10.00 $10.00
A1 Assy., Motor/Fan (fire suppression) $0.00 1 $14.50 $14.50
1 Fire Detection/Fire Suppression PWB 1 $15.51 $15.51 1 $38.00 $38.00
A1 Assy., Power Source $0.00 16 $4.25 $68.00
1 Battery Charger $0.00 1 $35.00 $35.00
A1 Assy., Cable- Adapter PWB to FDFS PWB $0.00 1 $4.00 $4.00
A2 Assy., Cable - Adapter PWB to PWR Amp $0.00 1 $10.00 $10.00
A3 Assy., Cable - Battery to PWB $0.00 2 $1.00 $2.00
1 Mounting Plate $0.00 1 $10.00 $10.00
2 Misc. Hardware 1 $4.48 $4.48 1 $30.00 $30.00

Subtotal $56.87 Subtotal $647.50
Total $704.37

ITEM DESCRIPTION
Unit Price Extended

Price

EE Department (Budgeted) Donated Parts
QTY. Unit Price Extended

Price
QTY.

EE 382 Final Report

34

8.0 Initial Operating Capabilities

After hours of test, the initial operating capabilities of the robot have been fully characterized.

All projected directed requirements have successfully meet. In addition to the project

requirements, the robot also has full remote start functionality. Two of the self-imposed goals

were not functional at IOC testing. The first was the return home function. This function has

been coded, but the code has not been integrated and tested. The other design goal was to

take on furniture. Although all hardware have been implemented and test, the code has not

been written. All of the current functionality is repeatable. Table 6 summarized the IOCs of

the robot.

Item % Functionality Repeatability Notes
Tone Detection 99 99 Noise Immunity
Autonomous Navigation 99 99 Closed-loop
Search all Rooms 99 99 without collisions
Locate W hite Lines 99 99 Noise Immunity
Detect Fire 99 99 from door of largest room
Locate Fire 70 99 high angular resolution
Extinguish Fire 99 99 wide angle
Return Home 0 0

Table 6 - IOC SUMMARY

1

Appendix 1

#include "hc12.h"
#include "DBug12.h"

#define TRUE 1
#define PERIOD 200 // prf = 5KHz(prescaler=32)
#define DS 25 // Desired speed - 1.5"
#define KL 216 // Conversion constant for left motor
#define KR 220 // Conversion constant for right motor
#define KPL 10 // Proportional constant for left motor
#define KPR 10 // Proportional constant for right motor
#define KWL 10 // Wall follow constant for left motors
#define KWR 10 // Wall follow constant for right motors
#define DS1 40 // Desired left motor speed - left turn
#define KL1 80 // Conversion constant for left motor-left turn
#define DS2 15 // Desired right motor speed - left turn
#define KR2 594 // Conversion constant for right motor-left turn
#define RTURN 1800 // Number of counts for 90 degree turn
#define UTURN 3200 // Number of counts for 180 degree turn
#define DS_3 40 // Desired distance for sensor 1
#define DS_2 48 // Desired distance for sensor 2
#define DS_4 65 // Desired distance for sensor 4
#define DS_5 30 // Desired distance for sensor 5

#define CAL_SUM 16 // light level constant

volatile unsigned int lms, rms, lduty, rduty, select ,sensornum, int_count,
turn_count, r_count; volatile unsigned int u_count, eog, centerL_sensor;
volatile unsigned int bit1=0, bit2=0, temp1=0, temp2=0, volt = 0, turn, turncount;
volatile unsigned int centerR_sensor, outterR_sensor, sensor_sum, outterL_sensor,;
volatile signed int temp, count, center_sensor;
volatile unsigned char s1=0,s2=0,s3=0,s4=0,s5=0,s6=0, s7=0, tone_start, cal_count,
tone_start; volatile unsigned char t1, t2, ts, s_count, line_startr, r_enter=0,
l_enter=0;
volatile unsigned char white_line, fire_out, white_count=0, line_detected=0,
line_startl,;
volatile unsigned char tone_start, t1, t2, ts, s_count, centerL_avg, centerR_avg,
outterL_avg;
volatile unsigned char outterR_avg, n, twozero;

void sensor_select();
void getdistance();
void turn_left();
void turn_right();
void stop_robot();
void delay(unsigned int ms);
void tone();
void fire_scan();
void end_of_game();

main()
{

2

 DDRT = 0x04; // Bit 0,1 input, bit 2 output
 DDRP = 0xbf; // Bit 0,1,4,5,7 output
 DDRS = 0xf0; // CS, SS, SCLK, MOSI outputs
 count = 0;
 lms = 0; // Zero counter for left wheel
 rms = 0; // Zero counter for right wheel
 select = 0;
 white_line = 0;
 line_startl = 0;
 line_startr = 1;
 r_count = 0;
 u_count = 0;
 s_count = 0;
 n = 4; //number of averages
 twozero = 0x01;

 PORTT = 0x00;
 PORTP = 0x88; // Set PP0-2,4,5 low, PP3 & 7 high

 // Setup for the A/D on HC12
 ATDCTL2 = ATDCTL2 | 0x80; // Power up A/D Converter
 ATDCTL4 = 0X01;
 ATDCTL5 = 0x70; /* 0 1 1 1 0 0 0 0

 | | | _____/
 | | | |

 | | | ___ Channel Select
 | | ________ Mult = 1 => Multi-channel

 | __________ Scan = 1 => continuous conversion
 ____________ S8CM => 8-bit mode */

 // Setup for serial peripheral interface (SPI)

 SP0CR1 = 0x50; // MSB 1st, multi-bytes w/SS asserted
// Master mode, 0 phase & polarity

 SP0CR2 = 0x00; // Normal mode (not bi-directional)
 SP0BR = 0x02; // 1MHz SPI clock
 PORTS = PORTS | 0x80; // Deselect slave

 // setup for pulse width modulator for channel 1 & 0
 PWCLK = 0x00; // Choose 8-bit mode
 PWCTL = 0x00; // Choose left-aligned
 PWPOL = 0x0f; // Polarity & select clock mode 0 for all Channels
 PWCLK = PWCLK | 0x18; // Select N = 3 for ChannelS 1 & 0
 PWPER0 = PERIOD - 1; // Select period for Channel 0-left wheel
 PWPER1 = PERIOD - 1; // Select period for Channel 1-right wheel
 PWEN = PWEN | 0x03; // Enable PWM on Channel 1 & 0

// set up real time interrupt

 RTIFLG = 0x80;
 RTICTL = 0x82; //RTIE, set interrupt rate 2ms
 enable(); // Enable interrupts
 tone();
 PORTP = PORTP | 0x30; // Disengage brakes on motor

 while (TRUE)

3

 {

sensor_select(); // get values for sensors

 if (white_line == 1 & line_startl == 1 & line_startr == 1) //found whiteline
{

stop_robot();
}

 else if (s4 >= DS_4) // stop and pivot right
{

turn_right();
}

 else if (s3 == DS_3 | count ==0) // Robot is going straight
{
lduty = (KL*DS)/100 + (KPL*(DS - lms))/10; // Dutycycle for channel 0
rduty = (KR*DS)/100 - (KPR*(DS - rms))/10; // Dutycycle for channel 1

PWDTY0 = ((lduty*PERIOD)/100)-1;
PWDTY1 = ((rduty*PERIOD)/100)-1;

count = 1;
}

 else if (s3 <= 10 & count == 1) // Turn left at detected opening
{

turn_left();
}

 else if (s3 < DS_3 | s3 > DS_3) // Adjust robot from veering left or right
{

lduty = (KL*DS)/100 - (KWL*(DS_3 - s3))/10; // Dutycycle for channel 0
rduty = (KR*DS)/100 + (KWR*(DS_3 - s3))/10; // Dutycycle for channel 1

if (lduty > 90) // Sets duty cycle if exceeds 200 or less than 0
{
lduty = 90;

Page 2
}

if (lduty < 5)
{
lduty = 5;
}

if (rduty > 90)
{
rduty = 90;
}

if (rduty < 5)
{
rduty = 5;
}

PWDTY0 = ((lduty*PERIOD)/100)-1;
PWDTY1 = ((rduty*PERIOD)/100)-1;

4

}

 }
}

void turn_left()
{
lduty = (KL1*DS1)/100 + (KPL*(DS1 - lms))/10; // Dutycycle for channel 0
rduty = (KR2*DS2)/100 - (KPR*(DS2 - rms))/10; // Dutycycle for channel 1

PWDTY0 = ((lduty*PERIOD)/100)-1;
PWDTY1 = ((rduty*PERIOD)/100)-1;

l_enter++; // keeps track of left turns
line_startl= 1;
}

void stop_robot()
{

r_count = 0;

PORTP = PORTP & ~0X30; // sets brake PP4,PP5

centerL_sensor = 0;
 centerR_sensor = 0;
 outterL_sensor = 0;
 outterR_sensor = 0;

count = 0;

delay(100);

centerL_sensor = ADR7H; // Reads fire sensor
centerR_sensor = ADR6H;
outterL_sensor = ADR5H;
outterR_sensor = ADR4H;

while (s_count < 2)
{

while (cal_count < (twozero << n))
{

centerL_sensor = centerL_sensor + ADR7H;
 centerR_sensor = centerR_sensor + ADR6H;
 outterL_sensor = outterL_sensor + ADR5H;
 outterR_sensor = outterR_sensor + ADR4H;

cal_count++;

}

centerL_avg = centerL_sensor >> n;
 centerR_avg = centerR_sensor >> n;
 outterL_avg = outterL_sensor >> n;
 outterR_avg = outterR_sensor >> n;

5

cal_count = 0;
centerL_sensor = 0;

 centerR_sensor = 0;
 outterL_sensor = 0;
 outterR_sensor = 0;

s_count++;
sensor_sum = (centerL_avg + centerR_avg + outterL_avg + outterR_avg);

if (sensor_sum > CAL_SUM)
{

fire_scan();
}

}

s_count = 0;
PORTP = PORTP | 0X04; // rev PP2

PORTP = PORTP | 0X30; // sets brake PP4,PP5
PORTP = PORTP & ~0x80; // Reset Altera counter set PP7 low
int_count++; // Increment counter

PORTP = PORTP | 0x80; // Set PP7 high
turn_count = 0;

while (turn_count <= UTURN)
{
lduty = (KL*DS)/100; // Dutycycle for channel 0
rduty = (KR*DS)/100; // Dutycycle for channel 1

PWDTY0 = ((lduty*PERIOD)/100)-1;
PWDTY1 = ((rduty*PERIOD)/100)-1;
}

PORTP = PORTP & ~0x04; // forward PP2

lduty = 50;
rduty = 50;

PWDTY0 = ((lduty*PERIOD)/100)-1;
PWDTY1 = ((rduty*PERIOD)/100)-1;

line_startl = 0;
 line_startr = 0;

u_count++; //counts number of u-turns

}

void turn_right()
{

PORTP = PORTP | 0X04; // rev PP2

PORTP = PORTP & ~0x80; // Reset Altera counter set PP7 low

6

int_count++; // Increment counter

PORTP = PORTP | 0x80; // Set PP7 high
turn_count = 0;

 line_startr = 1;

while (turn_count <= RTURN)
{
lduty = (KL*DS)/100; // Dutycycle for channel 0
rduty = (KR*DS)/100; // Dutycycle for channel 1

PWDTY0 = ((lduty*PERIOD)/100)-1;
PWDTY1 = ((rduty*PERIOD)/100)-1;
}
PORTP = PORTP & ~0x04; //forward PP2

}

void sensor_select()
{

while (select <= 6)
 {

 if (select == 0) // select channel 1 of A/D
 {

sensornum = 0xCF; // getting measured value of sensor 2
 }
 if (select == 1) // select channel 3 of A/D
 {

sensornum = 0xDF; // getting measured value of sensor 4
 }
 if (select == 2) // select channel 5 of A/D
 {

sensornum = 0xEF; // getting measured value of sensor 6
 }
 if (select == 3) // select channel 0 of A/D
 {

sensornum = 0x8F; // getting measured value of sensor 1
 }
 if (select == 4) // select channel 2 of A/D
 {

sensornum = 0x9F; // getting measured value of sensor 3
 }
 if (select == 5) // select channel 4 of A/D
 {

sensornum = 0xAF; // getting measured value of sensor 5
 }
 if (select == 6) // select channel 6 of A/D
 {

sensornum = 0xBF; // getting measured value of sensor 7
 }

getdistance(sensornum);
 }

select = 0;

7

}

void getdistance()
{

 PORTS = PORTS & ~0x80; // Select slave
 SP0DR = sensornum; // Extclk, unipolar, 0,1,& 2 sel Start bit
 while ((SP0SR & 0x80) == 0); // Wait for transmit complete
 SP0DR = 0; // Transmit byte of all zeros
 while ((SP0SR & 0x80) == 0); // Wait for transmit complete
 bit1 = SP0DR; // receive byte one
 SP0DR = 0; // Transmit byte of all zeros
 while ((SP0SR & 0x80) == 0); // Wait for transmit complete
 bit2 = SP0DR; // Receive byte two
 temp1 = bit1 << 2; // Bit shift left 2
 temp2 = bit2 >> 6; // Bit shift right 6
 volt = (temp1 | temp2); // Ored for sensor input
 PORTS = PORTS | 0x80; // Deselect slave

 if (select == 0)
s2 = volt; // Measured distance from sensor 2

 if (select == 1)
s4 = volt; // Measured distance from sensor 4

 if (select == 2)
s6 = volt; // Measured distance from sensor 6

 if (select == 3)
s1 = volt; // Measured distance from sensor 1

 if (select == 4)
s3 = volt; // Measured distance from sensor 3

 if (select == 5)
s5 = volt; // Measured distance from sensor 5

 if (select == 6)
s7 = volt; // Measured distance from sensor 7

 select++; // select next channel and sensor

}

void tone(void)
{

delay(25);
tone_start = 1;
ts = 0;

while (ts == 0)
{
tone_start = PORTP & 0x40; // Look at bit PP6 for tone input
t1= tone_start;
delay(5);
tone_start = PORTP & 0x40; // Look at bit PP6 for tone input

8

t2 = tone_start;
delay(200);
if (t1 ==0 && t2 == 0) // Tone detected
{

ts = 1;
}

 }
}
void delay(unsigned int ms) // set for delay of 1ms
{

int i;
while (ms > 0)
{
 i = D_1MS;
 while (i >0)
 {

i = i - 1;
 }
 ms = ms - 1;
}

}

@interrupt void rtif_isr(void)
{

white_line = PORTT & 0x01; // Looks for white line
high

int_count = 0; // Zero interrupt count
lms = *(unsigned int *) 0x0404; // measured Left wheel
rms = *(unsigned int *) 0x0406; // measured Right wheel
turn_count = turn_count + lms; // count for U-turn and

right turn
PORTP = PORTP & ~0x80; // Reset Altera counter

set PP7 low
int_count++; // Increment counter

PORTP = PORTP | 0x80; // Set PP7 high
RTIFLG=0x80; // Clear source of

interrupt

}

void fire_scan()
{

PORTP = PORTP | 0X30;

fire_out = 0;

while (fire_out == 0)
{

 centerR_sensor = ADR6H; // Read center right sensor
centerL_sensor = ADR7H; // Read center left sensor

lduty = (KL*DS)/100 - (KWL*(centerL_sensor - centerR_sensor))/10;
rduty = (KR*DS)/100 + (KWR*(centerL_sensor - centerR_sensor))/10;

9

PWDTY0 = ((lduty*PERIOD)/100)-1;
PWDTY1 = ((rduty*PERIOD)/100)-1;

if (white_line == 1)
{
PORTP = PORTP & ~0x30; // Sets brake on motor
PORTT = PORTT | 0x04; // Turn on Fan
delay(2000);
PORTT = PORTT & ~0x04; // Turn off Fan
fire_out = 1;

}
}
end_of_game();

}
void end_of_game()

{
eog = 1;
while (eog = 1)
 {

PORTP = PORTP & ~0x30; // Sets brake on motor
}

}

Appendix 2

1

Appendix 2

2

Appendix 2

3

Appendix 2

4

Appendix 2

5

Appendix 2

6

Appendix 2

7

Appendix 2

8

Appendix 2

9

Appendix 3

1

Appendix 3

2

Appendix 3

3

Appendix 3

4

Appendix 3

5

Appendix 4

1

