FINAL DESIGN FOR ROSIE THE ROBOT:
A DETAILED TECHNICAL REPORT

Prepared for: Dr. Kevin Wedeward
Dr. Stephen Bruder

Prepared by: Rebecca Brown
Adam Garcia
Manuel Jaramillo
Michael Jones

May 8, 2000

Abstract

The Electrical Engineering Department at the New Mexico Institute of Mining
and Technology gave the junior class an objective at the beginning of the spring semester
when the students enrolled in the Junior Design course. The objective for Spring 2000
was to design arobot that is able to navigate through a maze, find a candle flame and
extinguish the flame using closed-loop control and various other sensors. Each of the
sensors comprise a different subsystem of the design and each subsystem is then
implemented together with a Motorola 68HC12 processing board that interfaces each of
the subsystems together. In addition to accomplishing this goal, each group of students
learned to allocate manpower and communicate with one another. Each group needed to
complete this goal in atimely manner and with the mentality that a good quality product
would be designed.

The goal for Group 5 was accomplished with all the descriptions that were stated
above. The design of our robot “Rosie” not only describes each of the subsystems and
their integration, but the hard work and dedication that the group had towards
accomplishing our goals. The finalized product of hard work and dedication was greatly
rewarded because Rosie attended an International Competition in Hartford, Connecticut,
where she placed eighth out of fifty-three teams. In addition, Rosie competed in the local
competition and placed second. The following technical report presents the results of our

design for Rosie the robot.

Introduction

The design of Rosie involved many different subsystems including chassis and
motor design, distance detection, fire detection, white-line detection, tone activation and
fire extinguishing. All of these subsystems must then be integrated together so that the
robot can navigate the maze and put out the flame. The design was divided into four
areas so that each member of the group had smaller subsystemsto design and build. The
following report gives a detailed discussion of what each member did to meet the
requirements specified for the design. The goals of the group were to design make a
design which was compact, robust and clean in atimely fashion. Thefollowingisa
review of our design and what made Rosie a success.

Chassis

We decided that the most efficient method for maneuvering the maze would be
the differential drive system. By positioning two drive motors opposite each other on the
round 10-inch aluminum plate, along with a caster wheel for support, the robot could
easily make 180-degree turnsin place. As shown below in the simplified Figure 1, the
robot’ s caster wheel was placed at the front of the robot versus the rear in order to keep
the robot’ s center of gravity (C.G.) in the forward triangle (created between the two side
wheels and the front caster). Asthe robot traveled, the C.G. remained in the triangle
especially when the robot de-accelerated, thus preventing the robot from tipping forward
as it approached awall; however, we did run into some problems with the robot tipping
backward and hitting awall when it quickly turned to leave aroom. This was
approximately 95% corrected using accurate robot navigation. We felt that the chances

for the robot to tip forward and strike awall were greater than the tipping backward and

striking awall. Therefore, we felt the robot would be better at navigating the maze with

the caster wheel in front (Plus, it was fun to watch the robot pop wheelies).

Bottom View

Front Caster

C.G. Triangle

12 WV Battery

% Drive Motor Drive Motor %

1.5" Dia
Wheels
Differential Drive
Configuraticn

Motor and Velocity
Gontrol PCB

Fig 1: Bottom View of Robot Showing Robot Center of Gravity

In another strategy for our robot, we implemented a low-profile compact design.
By mounting hardware as close to the drive wheels as possible, the height of the robot
would be minimized and aid in the robot’ s tendency to tip. Also, we considered the
placement of components depending on their weight, thus ensuring that the robot’s C.G.
was inside the triangle. Asshown in Figure 2, we offset the HC12 and a small shelf
mounted directly over the HC12 to the rear of the robot. We mounted some of the
external control circuitry to the bottom rear of the robot. We placed the heavy 12-volt

battery just behind the front caster wheel. The weight distribution worked well to

balance the robot. There was enough weight provided by the 12-volt battery to keep the
robot’ s front caster on the ground. The offset HC12 and miscellaneous control circuitry

counter balanced the weight of the battery.

White Line & Tons Decoder PCB Fire Extinguisher

%
R R o, H
HCi12 FCB %
b‘% Fire Ssnsors and
P / e Detactar
- -
L 1

P L
7 (/ f;j) | b |

’

= [@
Matar & Velocity Contral \
12 volt Battery

-

@

Fig 2: Side View of the Robot

Power Distribution

The power distribution was broken up into three systems, as shown below in
Figure 3. First, 18 volts were used to power the fire extinguisher. We used two 9-volt
alkaline batteries wired in series. Initially, the robot was equipped with a single 9-volt
battery. Thiswas about 95% successful in blowing out the candle, but this was not
satisfactory. After wiring-in the second battery, the fan became 100% successful in
extinguishing the candle. The second source for power was a 9.6-volt radio controlled
toy-car type battery with arating of one amp-hour. The positive lead from the battery was

connected to each sub-system, and the ground was directly connected to the aluminum

chassis, which reduced wiring. It also provided a nice ground plane for the HC12 and

other circuitry. For amore detailed schematic of the power distribution, see Appendix B.

18 Volt | o
Battery
P Hamamatsu
Syt Encoders
9 6 Volt Regulator >
Batt |
g ery 5 VOlt ‘ ' Tone Decoder
Regulator HC12 Sensors Wil log
12 Volt e [Ngtors
Battery

Fig 3: Block Diagram of Power Distribution.

The majority of the robot’s external control circuitry ran from the 9.6-volt battery.
We acquired a Hamamatsu fire detector and control board that needed 10-volts.
Fortunately, the 9.6-volt battery usually would have about 10.5-volts after afull charge
which was adequate to power the Hamamatsu. Next, a 5-volt regulator was connected to
the 9.6-volt battery to supply power to the HC12, encoders, tone decoder, white-line
sensors, and the flame detectors. Also, the two frequency-to-voltage converters received
their power from an adjustabl e voltage regul ator that was set to 7-volts. 1n both cases,
each of the voltage regulators was rated at one amp. We came close to this rating on the
five-volt regulator, but we did not have any problems with the regulator overheating.
Since it was mounted to a piece of metal, it was kept cool and any excessive heat was

drawn away.

The third battery system was the 12-volt battery, which only powered the H-
bridges, and the Pittman Drive motors. This 12-volt V CR-type battery was impressively
rated at 2amps/20 hours, but the disadvantage to the battery was its weight. One item to
note is the Drive motors did not have their returns connected to the aluminum ground
plane, as did the 9.6-volt system. They each had a heavy-duty wire for their ground, and
they were directly connected to the H-bridges, thus ensuring the drive motors were
isolated from the rest of the robot’ s power system.

The main motivation for breaking up the power distribution was our concerns that
the drive motors and fan would generate a lot of noise. We were especially worried that
the HC12 and sensors would have poor performance because of motor noise. We are not
sureif the isolation was beneficial because we did not have time to try any other power
schemes; however, the one we used presented no troubles.

Power Budget

Power consumption was estimated at the beginning of the robot’ sinitial design
and we found that there was sufficient energy in the batteries to power the robot. Since
the power distribution was broken into three parts, there was less of a demand on any one

battery. In Table 1 below, isthe estimated power budget for each battery.

Table 1: Estimated Power Budget.

12 Volt System 9.6 VoIt System 18 Volt System
Item Watts Item Watts Item Watts
Motors 8.80 HC-12 0.43 Fan 18
H-Bridge 6.00 Fire Sensors 0.46
Freg/VoltConv. 0.10
Hamamatsu 0.15
Encoders 0.29
Regulators 2.00
Tone Decoder 2.00
White Line 0.15
Total 14.80 Total 5.58 Total 18.00

From experience, the 18-volt system would last about 15 minutesif operated
continuously. We went through many 9-volt batteries during testing. The 9.6-volt battery
would last about 1 hour and frequently, during long sessions of robot algorithm
development and testing, this battery would die. 1t was mandatory for the battery to be
connected to the batter charger afew hours before Junior Design class, or we would not
be able to test the robot for the whole period. It took about five hours for the battery to
charge completely. Finally, the 12-volt battery was estimated to last approximately 2
hours. We never had any troubles with the battery life primarily because of its high-
energy rating, and we usually charged the 12-volt battery the same time we charged the
9.6-volt battery.

Motor Control

There were several H-bridges to choose from: Some with two H-bridges on one
chip, others that needed little or no external circuitry and others with high power
capabilities. Since we were not completely certain what our motor current demands were
going to be, we decided to play it safe by using the H-bridge with the high power rating.
The National brand LMD18200T israted for 3 amps, and it can briefly handle 6 amps
peak (see Appendix A). It comes with the standard features such as direction, PWM, and
brake control. It also has some other bells and whistles we did not use, such as the ability
to send a warning when the chip is overheating, and it has the ability to monitor the
current being delivered to the motors. Once we wired-up the two H-bridges, one for each

motor, we forgot about them because we had absolutely no trouble with them.

Velocity Control

We initially intended to use the HC12' s pul se-accumulator to count the number of
pulses received from the encoders. We thought this would be the most accurate method
to determine the robot's vel ocity, but we needed two accumulators, one for each motor.
Since the HC12 only has one accumulator, we attempted to program a second one on our
previoudly installed Altera chip. Since our group is better suited to solving engineering
problems via hardware, it only took a few frustrating hours of attempting to implement a
pulse-accumulator in Altera before we decided to use frequency to voltage converters
(FTVC) to monitor the robot’ s velocity.

The FTVC are alittle tricky to set up due to external circuitry need. The Data
sheet on the LM 2907 gave some “cook book” formulas to determine component values.
At first, we were not happy with the performance of the FTVC asthere was alot of ac
ripple (about 60mV) at the output. We thought this might lead to large errorsin
determining the velocity. Scratching our heads and researching further into the problem,
we discovered that one of the external capacitors was the culprit so we changed from a
small value to amuch larger size. This change eliminated the large output ac ripple, but
the response time of the output was not acceptable. When we simulated the speed of the
motors, we fed in a 13khz square wave that simulated the motors at the maximum speed
we wanted to travel. However, when we simulated the motor stopping by changing the
input frequency to zero hertz, it took about 2 seconds for the output to drop to zero volts.
To make along story short, we experimented with different capacitor values and found
one which resulted in about a 5-mv output ripple, and with approximately a .25 second

response time changing from 5 to 0 volts. Once we figured out the component values, we

built asecond FTVC. After calibrating both, we found that thereis a very nice linear

relationship between the input frequency and the output voltage. As shown below in

Figure 4, with an input frequency ranging from 0 to 13 kHz thereisanicelinear 0 to 5-

volt output. Actually, both traces are on the graph, only one is visible because both traces

overlap each other perfectly. Our final judgement concerning the performance of the

FTVC has been outstanding. Appendix C gives a detailed schematic of the motor and

velocity control circuitry.

Freqg. To Voltage Converter Characterization

6.000

5.000

4.000

3.000

Vout

2.000

1.000

0.000 “~

Lo N~ (e}

Freq. In(kHZz)

13

—— LeftChannel
— Right Channel

Fire Detection Subsystems

Fig 4. Frequency to Voltage Response.

When looking at options for our fire sensors we had some criteria that needed to

be met in order for a sensor to be considered. First of all the sensor had to be small to fit

the low profile design of our robot. Second, the sensors had to be fairly obliviousto any

changesin lighting schemes. We did not want to worry about problems with calibration
and reflections due of changes from florescent lighting to Sodium vapor lighting for
example. After looking at all our options we decided on two different sensors to optimize
our detection of the flame and separated our fire detection into two parts; long-range and
short-range detection. For long-range fire detection we chose the UVtron R2868
Photomultiplier and the C3704 companion driving board made by Hamamatsu for its
reliability and extreme sensitivity. Usually the UVtron along with its driving board would
cost roughly $70.00, but we were able to receive a sample from the Hamamatsu
Corporation. For short-range detection we used PN168 phototransistors by Panasonic
for their versatility and their ease of use.
Ultraviolet Detection

For long range detection, we took advantage of the sensitivity and reliability of
the UVtron as well asits use of ultraviolet detection to speed up our candle search. With
the UVtron we were able to pass by aroom or peek into the entrance of aroom to know if
aflame was present. The UVtron is able to detect Ultraviolet light from all directions

and is sensitive enough to detect reflections from long distances as shown in figure 5.

VERTICAL VIEWING
Lt fig.)

HORIZOMTAL
VIEWING
{Fight Tig.

Fig 5: Angular Sensitivity of the Hamamatsu UVtron.
Source: http://usa.hamamatsu.com/

This sensor gives the option of different levels of sensitivity and a pulse digital output
that can easy manipulated. Usually the UVtron driving circuit takes 11-25Vdc for power,
but we took advantage of the fact that it can work on as little as 9vVdc. When the UVtron
detects aflameits output is a stream of digital pulses 10msin duration. The closer the
UV source isthetighter the duty cycle of the pulses. The stream of pulses was then fed
into the HC12 pulse accumul ator, which counted the amount of pulses and determined if
avalid flame was being detected. The proper subroutine was then called in the HC12
program.
Infrared Detection

For our short-range detection we decided to build a sensor that would be able to
pinpoint the flame with as much accuracy as possible. To get the highest amount of
accuracy we decided that two PN168 phototransistors in a binocular vision configuration

would be the best way to pinpoint the fire as shown below.

Fig 6: Binocular Vision Configuration Used to Pinpoint the Flame

The usual emitter voltage output of the phototransistors was in the millivolt range. In
order to calibrate the two sensors to give as close an output voltage as possible a 15 turn
10K? potentiometer was used to increase or decrease the emitter voltage of the
phototransistors. The emitter voltage was fed into aMA X492 dual micropower single-

supply op-amp in a non-inverting configuration with again of 1001 to give us avoltage

range between 1V and 5V (see Fig 7). The outputs of the amplifier were then fed into

two different A/D channels on the HC12.

e
23]
Toak
] |
oo
2
AR]
Rz

JFl

vee
T
4
10 POTE
s AR wee = :
L aumi wee |5 ——l— 4 FEADER
= 22 - L 2
2 fwa. Ly -
L VEE T 3
oo
= Compoomn_|
L]
S | KR
AP | fupHETa R
22 ES
S —
l1aok
a
10a
EG
1aF

Fig 7: Schematic of the Infrared Fire Sensors

To implement pinpoint accuracy with the phototransistors we had to reduce their
angular sengitivity and filter their input. To do this we housed each of them in a one and
a half-inch piece of a pen case that acted like ablind. Since the PN168 has a very wide
spectral range, we filtered the input to the phototransistors using a small piece of a 5
inch floppy disk. Thefilter was able to block all ambient light and limit the amount of
reflections we saw while trying to pinpoint the flame. To implement binocular vision we
mounted the two sensors angled in toward front center of the chassis. When scanning a
room the difference between the value of the two sensors was taken until the result was
closeto zero. Thisdesign proved to be reliable, accurate and was oblivious to any

changes in lighting schemes thus meeting our criteriafor agood fire detector.

Distance M easuring Sensor s

To navigate through the maze we found that it would be best to implement wall
following. Towall follow we needed to find a sensor that could accurately tell us our
distance away from the right and left walls as well as keep us from hitting any
obstructionsin front of us. The two sensors that were seriously considered for this job
were the GP2D 12 and the GP2D 120 both made by Sharp. Although both sensors proved
to be accurate and reliable we decided to use the GP2D 120 for its extra accuracy at close
range. The following graph shows the characteristic curve of output voltage vs. distance

for the GP2D120.

Characteristic Curve for Sharp GP2D120

3.5

vs LN
2 // \\ Sensor 1 (Left)

Sensor 2 (Center)

1.5 - \\ .
1 e — Sensor 3 (Right)
o \,\\x—i

L e e S B e
- < ~ o ™ © D N [Te]
— - - - o N

Voltage (V)

[eo]
N

Distance (cm)

Fig. 8: Output of the GP2D120 Distance M easuring Sensors.
The above graph was used to determine the range of the sensors and to mount them on
the chassis. When an object is about 3cm. away the distance sensor output peaks at 3V
and follows a smooth curve as the object farther away. In order to minimize any
confusion we decided to mount the sensors 4cm. inside the main plate at 45 degree angles

from each other on small aluminum L-brackets as shown below.

Fig 9: Mounting Configuration
of the GP2D120 Sensors

Fire Extinguishing Subsystem
To extinguish the flame we thought of a few different ways to implement an

extinguisher. Some options we researched included using a pressured CO; cartridge, a
small water hose, and amotor controlled fan. Our final decision was to use a motor
controlled fan powered by two 9V batteries in seriesto make 18V. The motor was
controlled by an opto-isolated relay that was controlled by PORTEA3 in the HC12.
When the extinguisher was to be used PORTEA3 went high and allowed current to
travel from the batteries to the motor and power the motor for a set duration. Once
PORTEA3 went low the relay cut the current flow to the motor and shut off the
extinguisher. For afan blade we used a 5in. model airplane propeller. The propeller
and the whol e extinguishing system proved to work well and effectively extinguished
even alarge candle flame.

White-Line Sensor Subsystem

The white-line sensor is a very important subsystem of Rosie' s design because the
sensor indicates when sheis at home, in aroom, or in front of the candle. The design of
the white-line sensor went through three preliminary designs before the final design was
implemented, etched, and mounted.

The first design consisted of using ared light emitting diode (LED) with a
phototransistor along with an operational amplifier (op amp). Thisfirst design had
problems finding the white surfaces because the LED did not emit enough light. The
second design consisted of the same components except for this design used a green
LED. Thisdesign was worse than the first design because it did not find any white

surfaces. Some of the other groups used these designs and they had consistent problems

with their white-line sensor. The final design that was used consisted of the same
components except an incandescent lamp, comparator and a Schmidt trigger. The
incandescent lamp emitted a sufficient amount of light to reflect off the white surface that
enabled the phototransistor to detect it accurately. Another part of the final design was
the implementation of an adjustable comparator, which discriminates between two
unequal voltages. The adjustable comparator enables the white-line sensor to be adjusted
for different lighting. This helps distinguish between imaginary and real whitelines. |
made a more accurate design that would enable us to have an efficient white-line sensor.
The Schmidt trigger enabled usto send adigital output to the 68HC12. The output would
beal for al black surfaces and a0 for all white surfaces. The white-line senor is
contained in afilm canister wrapped with black electrical tape to shield out al ambient
light. Thefinal design proved to be very efficient and did not cause any problems.

In addition, to designing an accurate and precise white-line sensor there also had
to be a good representation of the design. Protel was used to design the board for the
white-line sensor. This program takes a great deal of timeto learn. Thefirst etched
white-line sensor circuit board was nice but it could have been better. The group decided
that since the circuit board could have been done better we decided to implement the tone
decoder circuitry and white-line sensor circuitry al on one circuit board (see Appendix
D). Thisideaalso conserved space and connectors.

Tone Decoder

The tone decoder was an added accessory to Rosie because it was not required.

This subsystem enabled Rosie to be activated by a 3.5kHz signal generated by a piezo

buzzer. The reason we decided to add the tone decoder was to get a time reduction for

the national and regional competitions. We decided to use the LM567NC tone decoder
chip manufactured by National Semiconductor. The chip isvery accurate and precise and
can be easily implemented. Below is a diagram showing the circuitry for the tone

decoder.

e Al
LAlS ﬂ HeTa
1% E
ol LA
*, b
Al Lid5ri A7
i i i | T4
by T b P L | TOWESLT
T LR e
l0iELUE | e E EEE)
Al

1oy

R VY
23 udl4 CHEGIEHE) LAlE
47k -

Fig 10: Tone Decoder Wiring Diagram

The tone decoder chip has atiming capacitor and a timing resistor that determines the
frequency that will trigger its output low. The capacitor and resistor values can be
calculated using the equations in the specification sheet. The bandwidth (BW) is
determined by the capacitor on pin 2. We used a 10% bandwidth to enable the tone
decoder to only go low on the specified signal. All the other capacitors were used to
filter out noise. The specification sheet also noted that to further reduce the amount of
noise we needed to add aresistor from pin 4 to pin 1. Thisenabled Rosie to be activated
from adistance of 12 inches. The capacitor at the input on pin 3 wasto get rid of any DC
offset from the microphone condenser.

We used an inverting operational amplifier (op-amp) to amplify the signa
approximately 500 times. The single supply op-amp only gives the positive half of the

signal, so we added another offset at V+ by adding 2.5V. This enabled usto have either a

low or high output. The amplified signal was the reason Rosie could be activated at a

further distance. The circuitry for amplification is show below.

W

LiAG
(1%

ALE
A = .

| i

sKloan I !

L
Ll

MICRECC

Fig 11: Microphone Condenser Amplification

The problems with the tone decoder were minor except when implementing its
design with the white-line sensor circuitry. Protel was used for designing the board so we
encountered some problems. Some problems were getting al the traces right and making
sure that nothing was going to cause each of the different subsystems to work incorrectly.
Finally, after hours of hard work the tone decoder and white-line sensor worked
accurately all together on the board.

Subsystems I ntegration

In order to integrate all of the different subsystems of the robot together, the
Motorola 68HC12 was used. The HC12 was programmed to control all of the robots
actions, including navigating the maze and detecting and extinguishing the candle flame.
We have the HC12 setup with areal-time interrupt of 16ms. When the HC12 gets this
interrupt, all of the datafrom each of the subsystemsisread and stored. Using this data,

the HC12 decides which routine it should implement, and does so. Each routine used

many similar subroutines. Therefore, we made smaller functions that controlled each
separate subsystem. Each routine calls the subsystem functions needed to complete the
current routine. The different subroutines that we used for each subsystem are discussed
below.
Tone Decoder

The robot doesn’'t do anything until it receives the correct tone from the tone
emitter. Therefore, it just sends a desired speed of zero to its motors, and waits for the
tone. Once atoneis detected from the PORTEB, the robot waits for the next interrupt to
double check. If the toneis detected for three consecutive interrupts, then the tone is
assumed to be correct. Hence, the robot can begin the general navigation of the maze.
Motor Control

One of the most needed control algorithms is that of the motor control. This
system essentially tells the robot exactly what to do and how to react to any data read off
of the sensors. We made a function that would take desired left and right motor speeds
and then make the robot go as desired. We were also required to use closed-loop motor
control, so we also used the measured speeds of the left and right motors. As mentioned
previously, the measured speed was read off of the frequency to voltage converters. To
make the motors go the desired speed, we used pulse width modulated signals (PWM).
The PWM signal is a series of pulses whose duty cycle at a certain frequency determines
the speed of the motor. We set the PWM frequency to 1kHz, and then vary the duty
cycle of apulse to change the speed of the motor. The duty cycle is the length of the
pulse for one period. In order to change the speed, a proportional control equation was

used. This equation takes the desired speed and multipliesit by a constant, and then adds

it to the error of the desired speed and the measured speed also multiplied by a constant.
The equation is shown below.
DC =K*Sp + Kp*(Sp — Sw)

The constants K and Kp are determined through testing and experimentation. To find K,
we recorded the measured speed of the motor for different duty cycles. We then plotted
these values to get alinear curve representing desired speed versus duty cycle. The slope
of this curve gave usthe value for K. The constant Kp was entirely experimental. We
just tried different values until the robot went in a straight path using the closed loop
control.

We encountered some problems when first implementing the closed loop control.
First, we had to use temporary variables to do calculations so that we could have more
accurate integer values, and also use signed numbers. Once the calculations were
completed, we separated the number into an unsigned character for the magnitude of the
duty cycle along with an integer representing the sign of the duty cycle. The sign part of
the number gave us the direction of the motor, which was sent to PORTEA. Thereverse
direction of the motor control has a problem. We haven't quite figured out what it is.
This problem was corrected through other parts of the code, but in the future we would
like to correct this problem directly. This explains why the robot doesn’t have smooth
canned turns.
Wall Following

The wall following algorithm keeps the robot centered in the maze, and also
preventsit from hitting any walls or obstructions. The concept and calculations for wall

following are very similar to those of the motor control. Essentially, the robot stays a

desired distance from either aright or left wall. To do this, the error of the measured and
desired distances from the wall is computed. This error isthen added to the desired
motor speed to adjust the motion of the robot. If the robot is left wall following, then the
error of the left wall is only taken into consideration. Thiserror is added to the left motor
speed and subtracted from the right motor speed to get the desired effect. The opposite
happens when right wall following isimplemented. The equations for left wall following
are shown below.

SoL =K*Sp + Kwe*(Dp —Dw) Sor = K*Sp - Kwe*(Dp —Dw)
Again, the constants K and Ky are found through testing and experimentation. Ky is
found by plotting the output of the distances sensors to the different distances away from
thewall. The slope of the plot is Kywr. These constants are very sensitive to changes in
the desired speed of the robot. We just kept values for several different speeds, so that
we could have a variety of speeds to choose from when navigating the maze. Once
we got the robot to follow left and right walls properly, we had to add in code that would
take the front wall into consideration. To do this, we set a desired distance that we
wanted the robot to stay away from front walls. Once the robot got inside this distance,
an adjustment was made to turn the robot away from the front wall. If left wall
following, interaction with afront wall would cause the robot to turn right. Of course,
when right wall following, the robot turns left away from afront wall. The calculations
for avoiding the front wall are exactly the same as those for the correlating wall following

algorithm.

White-Line Detection

The white-line needs to be checked constantly to ook for aroom aswell asthe
white line around the candle. When the white-line subroutine is called, several things are
checked. If thereisawhite line, the robot must decide whether it isin aroom or not. |If
not in aroom, the robot sets the flag in_room and increments the number of rooms. If the
robot isin aroom, it must then check the fire flag to seeif thereis candlein the room. If
thefireflag is set, the white line must be around the candle. Therefore, the
white_line_candleflag isset. Otherwise, the robot isleaving aroom, so thein_room flag
isdecremented. When awhitelineis seen, aflagis set so that the white lineisonly
counted once. The robot must then see the black floor indicating no more white line,
before the white line will be checked again.
Fire Detection

For fire detection the robot uses two different subsystems, ultraviolet and infrared
detection. We use the ultraviolet subsystem, which consists of a series of pulses off of
the Hamamatsu, for wide range fire detection. The infrared sensors are then used to
pinpoint the flame. The Hamamatsu is fed into the pulse accumulator on the HC12. The
pulse accumulator counts the number of pulses that the Hamamatsu gives out. We wait
for three interrupts, to count the number of pulsesin approximately one sec. If we get at
least one pulsein that second, aflag is set telling the robot that a flame has been detected.
Once the flame has been detected, the robot does the needed maneuversto go into the
middle of the room.

When the robot gets to the middle of the room, it begins using the infrared sensors

to pinpoint the flame. The error between the two infrared sensorsis calculated. The

robot then turns toward the flame in small increments, trying to minimize the error
between the sensors. Once the error isvery small, the robot goes towards the flame using
the infrared sensor input. The robot goes forward at a desired speed, and adjusts the
motor speeds in accordance with the error of the infrared sensors. Thisis done so that the
robot continually centersitself on the flame. Once the robot sees the white line around
the candle, it stops and put out the flame.
Fire Extinguishing

The fire-extinguishing algorithm isasimple one. A 5V signal is output on
PORTEA to the fan. Then, the robot delays for a given amount of time, and shuts off the
fan by putting OV to the port. In the same function, the final room variableis set so the
robot knows which go home algorithm to implement. A flag is set saying that the candle
isout, and the fire flag is set back to zero.
General Navigation

Once all of the main subroutines are implemented, the navigation of the maze
must be done. There are many different routines that the robot needs to navigate the
entire maze and put out the flame. We decided to right wall follow through the maze,
checking the island room first for aflame. Therefore, the first routine tells the robot to
right wall follow at afast pace. While doing this, the robot counts the number of |eft
wallsthat it sees so that it knows when it turns the first corner and passes the first room.
Onceit turns the first corner, the robot continues right wall following but at a slower
pace. It then starts checking the Hamamatsu for candle detection.

If the robot sees aflame, it beginsto left wall follow at the faster pace to the

entrance of the first room. In order to detect the entrance, it must check the white line

sensor. Once it getsto the entrance, the robot then begins to right wall follow until it gets
to the center of the room. While going into the room, however, if the robot sees awhite
line then it begins centering on the flame. If no white line is encountered, it goes to the
center of the room and then centers on the flame using the infrared subroutine. Once
centered, the robot goes forward to the white line around the candle and puts out the
flame.

If the robot doesn’t detect a candle in the first room, it speeds up and continues
right wall following. Now the robot starts checking for awhite line as the entrance to a
room. Once it getsto aroom, it checks the Hamamatsu for aflame. If aflameis
detected, the robot will perform the same operations to out the flame. If no flameis
detected, the robot will do a canned turn and then continue right wall following to the
next room.

Oncethe candleis put out, avariable is set so the robot remembers what room the
candle wasin. Then the robot will do the appropriate wall following algorithm to get
home. If the candle was in the third room, the robot exits the room and check for the
white line of the fourth room. Once it seesthe ling, it turns away and continues to the

home spot.
Summary

The goal of the group was to build afully functional fire-fighting robot in time for the
Trinity College National Fire-fighting Robot Competition. We wanted a design that was
compact, robust, and very clean. In order to accomplish our goalsin the proper time, we
made a time-line specifying what each member was to complete each week. Thiswas a

good idea, and the backbone of our project. Everyone completed their tasks on time and

correctly. We also built a prototype of each subsystem on the robot. Once the prototyped
version was correctly interfaced with the HC12, we then built a clean final version of the
subsystem. This method proved to be a successful way of getting our components to
work. It also gave us avery clean and stable final product. All of the subsystems on the
final robot had etched circuit boards and were mounted in arobust and stable manner on
the robot.

We are very pleased with the final product of our robot. The group worked very
well together and everyone put in 100%. Our goals of building a compact, robust and
clean design were accomplished while keep within the $100 budget allocated to us by the
Electrical Engineering Department. Appendix E gives a detailed breakdown of our
budget specifying items purchased as well as those donated from various corporations.
We attended the national competition and placed 8". We also placed 2™ in the local
competition. We plan to change some things on the robot in the future and hope to take
Rosie back the national competition next year.

One thing we will change in the future is the size of the wheels. We would liketo
increase the diameter of the wheels to two inches. Thiswill also usto go over ramps
easier, aproblem that we had at the national competition. The robot needs to be
lightened up alittle so that we can speed her up. The larger wheelswill aso aid in
increasing Rosie' s speed. We will also look into methods for maneuvering around the

furniture.

Appendix A
Abbreviated H-Bridge Specifications

Absolute Maximum Ratings ote 1)

If Military/Aerospace specified devices are required, Power Dissipation (Tg = 25°C, Free Air} aw
pleage contact ithe National Semicanductor Sales Junction Temperaturg, T jimax) 160°C
Office/Distributors for availability and specifications. ESIH S ity (Note 4) 1500V
Total Supply Vokage (Vs, Pin 6) 60V Storage Termperature, Terg ~40°C to + 150°C
Voltage a1 Pins 3, 4,5, 8 and 9 12v Lead Temperature {Soldering, 10 se¢.) 300°C
Voltage at Bootstrap Pins (Pins 1 and 11) Yoyt ¥ 16V
Paak Qutput Current {200 ms) 6A Operating Ratings (votw 1
Continuous Output Current (Note 2) 3A Junction Temperature, T, ~40°Cto +125°C
Power Dissipation {Note 3) 25w Vg Supply Voltage +12V to +5BY
Functional Diagram
THERMAL FLAG OUTPLT BOOTSTRAP 1 OUTPUT 1 vy OUTPUT 2 BOOTSTRAP 2
4 1 2 3 1¢ 11
(F) O (i) Q O
THERMAL }) 8 + . 4)
SEMSING N—'j t —
[—
UNCERVOLTAGE)]
Lo0KoLT CHARGE l i CHARGE
FUMWP FUMP CURRENT
OVERCURRENT DRNVE DRIVE
DETECTION %L::EZ:::; Qs EE";;ET
SHUTOOWN |
omecTon 3 O— L —D6_| i! z i ""'""!I -
BRAKE 4 (— LOGIC
PWH 5 (O
O
7
SROUND TLAH/ 10568 -1

* 0Tz [
[t
15N

ST AEpoy, olinmTbagg of ¢ -
& b L

STDOTIE 0] H
i LUG=
£ smARg g o], 5 o
od [10H T vy
COMT
,
d T | oz o ¢
RERY SBTRI N U 6
TR of
rd .

a u

Appendix B
Schematic of the Robot's
Power Distribution System

WOURAU T A5 g HoA 057 96

FH

ML= =

1 ¥
R e R
SHEPLIH 0] H_% ——————

[T
dm 7 71
73 _ o

&

TIOII0]) VR

&d

TER SR A T M

il
RO 70 1oL 71 TR ZeR0g 11O 81

1 [L [[f . [. [=

Appendix C
Schematic of the Motor and Velocity
Control Board

(2]

L
€4 lbo
lbal®

3300
I

Ld LMl

iy

1t
LTI 220
g
B Sugp |
Dup
Du
B _aung
Cuio S
a
4
i
I

(4]
0 lu

=

Freit |t

C Il U L I

(S 2§52 é%fﬁ _
= =l =] = _“'

Ui Lol

Appendix D
Schematic for White-Line Sensor and Tone Decoder

TAH 144

LAMF

UAlh
1%

- \J
LAY

Ih

= o 2

., 3 g
=

.-""l; _'_"-.,_.. 1T

Zoa

g

= - £
;; = g

Ats

TOWEDUT

¥ =
2
%xL% 2
Ss
z At
e
3 | %
9%y e
5| Esgfs
5|=58E 3
AT

_ | #Fe
o m
Sied

s :

i
V™

e

= Z
P g
2.1 %
= g Sz
Sal o
= =
g Z =
%F%F
vfl.’f.i’ﬁ 2
2 2 3 8

Appendix E

Final Detailed Budget

Quantity Cost per Item Total Donated
2 $1.00 $2.00 No
2 $1.50 $3.00 No
2 $1.07 $2.14 No
2 $ 14.06 $28.12 No
1 $1.98 $1.98 No
2 $ 250.00 $ 500.00 Yes

$ 20.00 No
1 $0.50 $0.50 Yes
1 $1.99 $1.99 No
1 $3.29 $3.29 No
1 $1.69 $1.69 No
3 $- $- Yes
1 $ 70.00 $ 70.00 Yes
1 $4.00 $4.00 Yes
1 $0.49 $0.49 No
1 $1.99 $1.99 No
1 $3.49 $3.49 No
1 $1.00 $1.00 Yes
1 $1.00 $1.00 Yes
1 $ 24.99 $ 24.99 No
2 $3.98 $3.98 No
1 $- $- Yes
3 $5.17 $5.17 No
3 $- $ - Yes
1 $6.99 $6.99 No
1 $0.99 $0.99 No
1 $1.29 $1.29 No
2 $0.99 $1.98 No
13 $0.13 $ 0.56 No
$ 50.00 $ 50.00 No
5 $4.50 $22.50 Yes
$ 20.00 $ 20.00 No
14 $1.99 $ 27.86 No
TOTAL $ 812.99
TECH $97.26
BUDGET
DONATED $ 715.73

Appendix F

Navi gation Al gorithmfor Rosie the Robot

/**

Fi | ename:

home_maze. c

Witten by: Rebecca Brown

Pur pose:

This is a programto control Rosie the robot
t hrough the home maze. The robot should
right-wall follow at a fast pace until it
turns the first corner of the naze. Then,

it continues to right-wall follow but slows
down and starts checking the hamamatsu for a
candle in the first room After it passes
the first room it speeds up, and checks the
hamamat su once it detects the entrance to a
room Once the hamamatsu detects a candl e,
the robot enters the roomfor a bit, and
then uses the ir sensors to get centered on
the flame. Once centered, the robot goes
forward until a white line is detected, and
then turns the fan on to extinguish the
flame.

**/

/* Include files */

#i ncl ude "nmat h. h"
#i ncl ude "hcl12. h"

#i ncl ude "Dbugl2. h"

/* Define constants */

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne

Kir 1 /* 1r detection constant */

Kp 1 /* Motor control constant */
REVERSE | 0x01 /* Direction bits for left notor */
FORWARD | OXFE

FORWARD r OXFD /* Direction bits for right notor */
REVERSE r 0x02

TURN 85 /* Constant anount for turning */
D 1MS (8000/4) [/* Used for delay function */

/* define routine names */
#define before first 1
#define check first 7

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

/*

d obal

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

go_to_first 2

after first 4
check _roonms 5
turn_away 6

put _out 3
go_hone_1
go_hone_2
go_hone_3
go_hone_4

12
13
14
15

vari abl es */

[* Flags */

I nt

nt
nt
nt
nt
nt

nt
nt
nt
nt
nt
nt
nt
nt
nt

routine;

reflection = 1
turned left =
turned_right = 0;
candl e_check_done
in_room= 0;

white |ine _candl e
w = 1,
tenp_fire=0;
centered = O;

put _out first 10

left _wall _flag = O;

candl e_out = 0;
dat a_f ound;

first_roomcheck _done =

at _candle = 0;

* Counters */

/

i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt

/*

go forward =
num_ of _roons
go_in_room =
turn_around = O;
left _wall count
count3 =
count 2

0;
= O;
0;

cooo

e = 0;

Val ues fromA/ D */
unsi gned char
unsi gned char neasured_r

=0;/*

measur ed_|

/* Says which routine to use */
/[* Is it a candle or a reflection */
/* Says whet her you turned |eft */
/* Says whet her you turned right */

0; /* For checking roonms with hama */
/*

Set to 1 when in a room */
O;/* Set for white line in a room */
/[* Just a loop flag in white line */
/* Set when hama detects a candle */

/* Set when robot centers on flanme */
/* Used when | ooking for left walls*/
/* Set after fan goes on and off */
/* Set when rti interrupts */
0;/* Set when first room passed*/

/* Set when white |ine candl e seen */

/* Counter to go towards the candl e*/

/* Counts the nunber of roons */

/* Counter to go into the room */

/* Counter to turn around */
Counts nunber of left walls */

/* Sinple counters */

/* Counter backup after flame out */

/* Make sure your inside white |ine*/

*/
*/

| eft notor
ri ght notor

Meas speed of

/*
/* Meas speed of

0;
0;

unsi gned char neas_di st _r
unsi gned char neas_di st _|
unsi gned char neas_dist _f
unsi gned char hana_pul ses

Meas dist fromright wall */
Meas dist fromleft wall */
Meas dist fromfront wall */
0;/* Read of hama off of PACNT */

* X X

0;/
0;/
0;/

int ir_left = 0; /[* Left ir sensor reading */
int ir_right = 1; /* Right ir sensor reading */
int white_line = 0; /* Read off PORTEB pin O */
int tone = 2; /* Read off PORTEB pin 1 */

[* Other variables */

unsi gned char hama = 0; /* Total nunber of hamamatsu pul ses*/
unsi gned char threshold = 0;/* Mn value to avoid reflectn */
int final _room= 0; /* Where did we end up? */

mai n()
{
/* Desired val ues for hamamatsu */
unsi gned char des_pul ses, des_pul ses_room 1;

/* Desired speeds */
unsi gned char canned_speed, slow speed, fast_speed 1,
sl ow speed_ 2, fast _speed 2;

/* Desired distances fromthe wall */

unsi gned char des dist left side 1, des dist |left_side 2;
unsi gned char des _dist left _side 3, des dist_|left_side 4;
unsi gned char des_dist_right_side_ 1;

unsi gned char des_dist_right_side_2;

unsi gned char des_dist_right_side_3;

unsi gned char des_dist_right_side_4;

unsi gned char des_dist_front_1, des_dist_front_2;

unsi gned char des_dist _front_ 3, des_dist _front_ 4,

/* Wall follow ng constants */

int Kwfl 1, Kwfl _2;

int Kwfr_1, Kwfr_2, Kwir_3, Kwir_4, Kwr_5;

int Kwfr_fast, Kwfr_fast_2;

int Kwff_1, Kwif_2, Kwif_3, Kwf_4, Kwif_fast_2;

/* M scel | aneous vari abl es */
nt start = 0;

nt countl, error, b;

nt tone_flag = O;

nt ir_check;

nt canned turn = O;

i
i
i
i
[_
int far = 0;

DBugl2FNP->printf("Here W Go\n\r");

[* Setup the rti, pulse accurmulator, pwm and A/D */
setup();

[* Setup ports (PORTEA-output, PORTEB-input) */
DDREA = DDREA | 0x01;
DDREB = DDREB & 0xO00;

/* Enable interrupts */
enabl e();

/[* Intialize speeds */

fast _speed 2 = 0xcO;
fast _speed_1 = 0x85;
sl ow_speed = 0x50;

sl ow speed 2 = 0x10;
canned_speed = 0x50;

/* Initialize desired di stances */

des dist left side 1 = 0x2a;
des_dist_left_side_2 = 0x02;
des dist left _side 3 = 0x23;
des dist left side 4 = Oxla;
des _dist _right _side 1 = 0x2a;
des_dist_right_side 2 = 0x20;
des_dist_right_side 3 = 0x10;
des _dist _right _side 4 = 0x2c;
des dist front 1 = 0x10;
des dist front 2 = 0x08;
des _dist _front_3 = 0x13;
des dist front_ 4 = 0x09;

/* Initialize pul se variables */
des_pul ses_room 1l = 1;
des_pul ses = 1;

/* Make sure fan is off */
PORTEA = PORTEA & ~0x04:

count 1

:O'
ir_check =

0;
/[* Initialize wall-follow ng constants */

Kvff 1 = 8;
Kwff 2 = 14;

Kwff 3 = 11;
Kwff_ 4 = 13;
Kwff fast 2 = 15;
Kwfl 1 = 4;
Kwfl 2 = 2;
Kwfr 1 = 3;
Kwfr_2 = 5;
Kwfr 3 = 8;
Knfr 4 = 7;
Kwfr_5 = 6;
Kwfr fast = 11;
Kwfr_fast_2 = 10;
/* Wait for the correct tone */
whil e(tone_flag < 4)
{
/* Rti has interrupted */
i f(data_found == 1)
{
choose_routine();
/* Begi nning of program */
if(routine == before first)
{
/* Deci de whether correct tone */
tone flag = tone_decoder(tone_flag);
/* 1f no tone stay on hone spot */
go(0, 0);
PACNT = O;
}
}
}
/* Begin main | oop */
whil e(1)
{

[* Wait for RTI to interrupt */

i f(data_found == 1)

{
/* Decide where we are in the nmaze */
choose_routine();

/* Go fast before first room?*/
if(routine == before first)
{
[* Check for a white line */
white |ine_detection();

/* Wait for three interrupts and check
hama readi ng*/
if(countl == 3)

{
hama_det ecti on(des_pul ses_room 1) ;
countl = O;
hama = 0;
PACNT = O;
}
[* Start out slow to avoid nmaking a

wheelie */
if(start < 5)
{
start= start +1,
right_wall _foll ow(sl ow speed,
des_dist_right_side 2, Kwfr_1, des_dist_front_2, Kwff_1);

}
/* Go fast */
el se

right _wall _followfast_speed_ 2,
des_dist_right_side 2, Kwfr_fast, des_dist_front_2, Kwif_2);

countl = countl + 1;
hama = hama+hama_pul ses;

[* Count nunber of left walls */
count _left_wall();

}

/* After second left wall, go slow to check
first room*/

if(routine == check_first)

{

/[* Check for a white line */
white_ |ine_detection();

[* Wait for three interrupts and check
hama readi ng */
if(countl == 3)
{
hama_det ecti on(des_pul ses_room 1);
countl = O;
hama = O;
PACNT = O;

}

/* G slow to check first room*/

right_wall _foll ow(sl ow speed,
des_dist _right _side 2, Kwir_1, des dist front_ 1, Kwff_1);

countl = countl + 1,

hama = hama+hama_pul ses;

count left _wall();

[* If hama in first room left-wall followto
the room */

if(routine == go_to first)

{
[*Check for a white |ine*/
white |ine_detection();

/* Left wall folow into room*/
left_ wall _foll owfast speed_1,
des_dist _left_side_1, Kwfl_1, des_dist _front_ 1, Kwff_1);

PACNT = O;
}

[* If hama in room2,3,0or 4, this routine puts
out candle */
i f(routine == put_out)
{
/[* Go into mddle of room*/
if(go_in_room< 170)
{
[*Check for white |line around candl e*/
white | ine_detection();

/* 1If white line around candl e, stop
and check ir*/

if(white_line_candle == 1)
go_in_room = 200;

/* Left wall followinto the room */
i f(num_ of _roons == 3)
left_wall _followfast_speed_1,
des _dist left _side 2, Kwfl_ 1, des dist front_ 1, Kwff_1);
el se
left_wall _followfast_speed_1,
des _dist left _side 4, Kwil _ 1, des dist front_ 1, Kwff_1);

go_in_room= go_in_room+ 1

}
/[* Once in room center on candle */
el se
{
/[* Calibrating sensors? */
if(ir_check == 0)
{
[* Check for a white line */
white |ine_detection();
/* 1If not centered, then use ir
to adjust position */
if(centered == 0)
{
[* 1f reflection then turn
away and keep checking */
if(reflection == 1)
reflection_check();
/* Continue checking until ir reading is the sane */
el se
{
go(0, 0);
whi | e(dat a_f ound== 0);
choose_routine();
sense_candl e();
}
}
/* Once centered, check for white Iine and put out flanme */
el se
{

[* If you see a white line, go forward to nake sure you
are inside*/
if(white |ine_candle == 1)
{
if(at_candle == 0)
{

at_candle = go_to_candl e(25, slow speed);

if(far == 1)

el se

at _candl e go_to _candl e(30, sl ow speed);

}
el se
exti ngui sh();

/[* Go towards flane until white |line detected */

el se
{
ir_detection(sl ow speed);
far = 1;
}
}
}
/[* W are just calibrating, so just read ir sensors */
el se
go(0, 0);

whi | e(data_found == 0);
choose_routine();
sense_candl e();

}
}
PACNT = O;
}
/* Right wall follow fast, until you find a room */
if(routine == after_first)
{

/* Check for a room */
white_line_detection();

/* Right wall follow fast */
right_wall _follow(fast_speed_2,
des _dist _right _side 1, Kwir fast 2, des _dist _front_ 2, Kwif_fast_2);

PACNT = O;
}
/* Check for a candle in roons 2, 3 or 4 using
hama */
i f(routine == check _roons)
{

/* Stop entrance and check for candle */
go(0, 0);

/* Wait for three RTI interrupts and then
check hama */
if(count2 == 3)
{
hama_det ecti on(des_pul ses);
candl e_check _done = 1,

PACNT = O;
}
count2 = count2 + 1;
hama = hanma_pul ses+hang,;

}

/[* If no candle in room turn around and
conti nue checking */
if(routine == turn_away)
{
[* Turn around to the left */
go(- canned_speed+0x25, canned_speed+0x35) ;

count3 = count3 + 1;
if(count3 == 7)
{
in_room= 0;
count3 = O;

candl e_check_done = 0;

PACNT = O;
}
/[* Go into mddle of first roomand put out
candl e */
if(routine == put_out _first)
{

/[* Go to mddle of first roomusing rwt */
if(go_in_roomc< 125)
{
/* Check white |ine around candle */
white |ine_detection();

/* 1f candle, then stop and get
centered */
if(white_|ine_candle == 1)
go_in_room = 200;

right_wall _follow(fast_speed_1,
des_dist _right _side 3,Kwfr_1, des dist front_ 1, Kwff_1);
go_in_room= go_in_room+ 1

}

/* When mddle room center on candle */
el se

{

/* Not calibrating sensors */

if(ir_check == 0)
{
/* Check for white |ine around
candl e */
white |ine_detection();

/*1f not centered, get centered*/
if(centered == 0)

{
[* If reflection, turn away
and keep checking */
if(reflection == 1)
refl ection_check();
/* Use ir sensors to center
on flame */
el se
{
go(0, 0);
whi | e(dat a_f ound== 0);
choose_routine();
sense_candl e();
}
}
/[* If centered, go to flanme and
put out */
el se
{

/[* 1f white line found, go
i nside of |ine and extingui sh*/
if(white |ine_candle == 1)

{
/* CGet close enough to
candl e */
if(at_candle == 0)
if(far == 0)
at_candle = go_to _candl e(30, slow speed);
el se
at_candle = go_to_candl e(25, slow speed);
}
[* Put out flame */
el se

ext i ngui sh();
}
/* 1f no white line, go
towards flame */

el se
ir_detection(slow speed);

}

}

/* 1f we are calibrating sensors,

just check the ir readings */

el se

{
go(0, 0);
whi | e(dat a_f ound== 0);
choose_routine();
sense_candl e();

}
}
PACNT = 0;
}
/* Routine to go honme fromfirst room*/
if(routine == go_hone_1)
{

[* Turn away fromflanme to the right */
i f(canned_turn < 10)

{

i f(canned_turn == 0)
go(canned_speed, - canned_speed);

canned_turn = canned_turn + 1
in_room= 3;

}

[* Left wall follow hone */

el se

{

/[* Count white |ines */
white |ine_detection();
/[* Stop at the home spot */
if(in_room== 1)
go(0, 0);
el se
left_ wall _foll owfast speed_1,
des _dist left _side 3, Kwil_ 2, des dist front_ 1, Kwff_3);

}
}

/* Routine to go home fromroom4 */
if(routine == go_hone_4)

{

[* Turn away fromflame to the left */
i f(canned_turn < 15)

{

i f(canned_turn == 0)
go(- canned_speed, canned_speed) ;

canned_turn = canned_turn + 1
in_room= 3;

}

/* Right wall follow honme */

el se

{

/* Count nunber of white lines */
white |ine_detection();

/[* Stop at hone spot */
if(in_room==1)

go(0, 0);
el se

right wall followfast speed 1,

des_dist_right_side_1, Kwr_4, des_dist _front_3, Kwf_4);

}

}

/* Routine to go home fromroom?2 */
if(routine == go_hone_2)

{

[* Turn away fromcandle to the left */
i f(canned_turn < 9)

{

i f(canned_turn == 0)
turn_left();

canned_turn = canned_turn + 1
in_room= 3;

}

/* Go honme */

el se

{

/* Check white line */
white |ine_detection();

[* Stop on home spot */
if(in_room==1)
go(0, 0);
el se
{
/* Left wall follow when out of room */
if(in_room== 2)

left wall _followfast speed 1,
des_dist_left_side_1,
Kwfl 1, des_dist front_ 1, Kwif_1);
/* Right wall follow when in room*/
el se
right _wall _follow(fast_speed 1,
des_dist_right_side_ 2, Kwmr_2, des_dist front_1, Kwf_1);

}
}
}
/* Routine to go home fromroom3 */
if(routine == go_hone_3)
{

[* Turn away fromcandle to the left */
i f(canned_turn < 9)

{

i f(canned_turn == 0)
turn_left();

canned_turn = canned_turn + 1
in_room= 5;

}

/* Right wall follow honme */

el se

{

/* Check white [ine */
white |ine_detection();
if(in_room== 1)

go(0, 0);
el se
{
[* Turn away fromroom4 */
if(in_room== 3)
{

i f(turn_around < 10)

{

turn_around = turn_around + 1;
turn_left();

el se
in_room= 2
}
/* Right wall follow honme */
el se

right_wall _followfast_speed_1,
des _dist _right _side 1, Kwr_2, des dist front_ 1, Kwff_1);

}
}

}
}
DBugl2FNP->printf("end of prg\n\r");
}

/**

* *

* Function: rti _isr() *
* *
*escription: Interrupt service routine for the rti *
interrupt. When the rti interrupts, *
data is read off of the A/D, ports and *
* t he pul se accumul at or. *

**/

@nterrupt void rti _isr(void)

{
/* Set the data found flag */

data _found = 1;

/* Read the ir sensors */
ir_right = ADROH;
ir left = ADRLH

/* Read the notor speeds */
nmeasur ed_| ADR3H
measured r ADR4H

/* Read the distance sensors */
meas_di st _r ADR5H
nmeas_di st _| ADR7H;
nmeas_di st _f ADR6H

/* Read the hama pul ses off the pul se accunul ator */
hama_pul ses = PACNT,;

/* Read data off of the ports */
white |ine = PORTEB & 0x01;
tone = PORTEB & 0x02;

/[* Clear the rti interrupt */
RTI FLG = 0x80;

}

/***
* *
* Function: go(int des |, int des_r) *
* *
* Description: This function takes a desired right and *
* | eft notor speed and conputes the *
* correct duty cycle need to nmake the *
* nmotors go the desired speed. |In order *
* to do this the current neasured speed of *
* each notor is al so needed *
*

***/

void go (int des |, int des_r)
{
/[* Cal culated duty cycles of left and right notors */
unsi gned char dc_I, dc_r;
/* Direction of left and right nmotors */
unsi gned char direction_I|, direction_r;

/* Tenporary integer values, used for calculations */
int tenp |, tenp_r;

/* Continuously calculate the duty cycle fromdesired and
nmeasur ed speeds */
/* Do forward cal culation for left notor*/

if(direction_| == FORWARD |)
tenp_| = (0x14*des_I|/0x2f)
+ Kp * (des_| - neasured |)/6;
/* Do reverse calculation for |eft notor */
el se
tenmp | = (0x14*des_|/0x2f)
+ Kp * (des_| + neasured |)/6;

/* Do forward cal culation for right notor */
if(direction_r == FORWARD r)

tenp_r = (0Ox14*des_r/0x2f)
+ Kp * (des_r - neasured_r)/6;

/* Do reverse calculation for |eft notor */
el se

tenp_r = (0x14*des_r/0x2f)
+ Kp * (des_r + neasured r)/6;

/* Set the duty cycle as an unsi gned nunber */
dc | =tenmp_I;
dc_r =tenp_r;

/* Make sure duty cycle doesn't go over max val ue */
if(tenp_| > Oxfe)

dc | = Oxfe;
if(temp_ | < -254)
dc_|I = Oxfe;
if(tenp_r > Oxfe)
dc_r = Oxfe;
if(tenp_r < -254)
dc_r = Oxfe;

/* Set direction bit for left nptor */
if(tenp_I >= 0)

{
direction_| = FORWARD | ;
PORTEA = PORTEA & direction_|I;
}
el se
{
direction | = REVERSE |;
PORTEA = PORTEA | direction_l;
}

/[* Set direction bit for right notor */
if(tenp_r >= 0)

{ direction_r = FORWARD r;
PORTEA = PORTEA & direction_r;

}

el se

{

direction_r = REVERSE r;
PORTEA = PORTEA | direction_r;

}

/* Reset the routine and data flags to 0 */
routi ne = 0;
data_found = O;

/* Send notor the current duty cycle */
PWTY3 = dc_|;
PWDTY2 dc_r;

/**

*

*
*
*
*
*
*
*
*
*
*
*
*

Functi on: left_wall _follow)

Description: This function takes a desired speed,

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkhhkhkhhkhhhkhhkhkhhkhhkhdhhkhhkhkhhkhhhkhhkhkhhkhhkhkihkkikhrkhi*x

* % X % %

desired distances fromleft and front
wal l's, and left and front wall follow ng*
constants. It conputes the desired left*
and right notor speeds needed to keep *
the robot at the desired distance from *
the left and front walls. The walls *
input is only used when the robot is *
cl ose enough to the front wall. *

*/

void left_wall _follow(unsigned char des_speed, unsigned char
des _dist _left _side, int Kwfl, unsigned char des_dist _front, int

Kwf)

{

/* Desired left and right notor speeds */
int des_left, des_right;

/* Calculated front wall error */

int front_error;

/* Calculate the desired |l eft speed based on the |eft
wal | data */
des |l eft = des_speed

+ Kwfl *(nmeas_dist | - des_dist_|left_side)/2;

/* Calculate the desired right speed based on the |eft
wal | data */

des right = des_speed

- Kwfl*(meas_dist | - des _dist _left_side)/?2;

/[* Add in front data if robot gets close to front wall */
if(meas_dist_f >= des_dist _front)

front _error = neas _dist f - des dist front;

des left = des left + Kwff*front _error/ 2;

des_right = des_right - Kwff*front_error/ 2,
}

/* Send desired speeds to the go function */
go(des_left,des right);

/**

*

Functi on: right_wall _follow)

*

*

* Discription: This function takes a desired speed,

* desired distances fromright and front

* wal I's, and right and front wall

* foll ow ng constants. It conputes the

* desired left and right notor speeds

* needed to keep the robot at the desired
* di stance fromthe right and front walls.
* The walls input is only used when the

* robot is close enough to the front wall.
*

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkhhkhkhhkhhhkhhkhkhhkhhkhdhhkhhkhkhhkhhhkhhkhkhhkhhkhkihkkikhrkhi*x

S~ %k F ¥ F %k X X ¥ X X X X

void right_wall _foll owunsigned char des_speed, unsigned char
des_dist_right _side, int Kwfr, unsigned char des_dist front, int
Kwf f)
{

/* Desired left and right notor speeds */

int des_left, des_right;

/* Calculated front wall error */

int front_error;

/* Calculated the desired right speed based on the right
wal | data */

des right = des_speed

+ Kwfr*(nmeas_dist_r - des_dist_right_side)/3;

/* Calculated the desired | eft speed based on the right
wal | data */

des |l eft = des_speed

- Kwfr*(meas_dist_r - des_dist_right _side)/3;

/[* Add in front data if robot gets close to front wall */
if(meas_dist_f >= des_dist _front)

front _error = neas _dist f - des dist front;
des right = des_right + Kwff*front_error/ 2;
des left = des_ left - Kwif*front _error/2;

}

/* Send desired speeds to the notors */
go(des_left,des right);
}

/**

*

Functi on: hama_det ecti on()

desired pul ses set the tenp_fire flag.

kkhkkkhkkhkhkkhhkkhkhhkkhhkhkkhhkhhkhkhhkhhhkhhkhhhkhhkhdhhkhhkhkhhkhhhkhhkhkhhkhhkhkihkkhkhikhi*kx

*
* *
* *
* Description: | f nunber of pulses is greater than the *
* *
* */

voi d hama_det ecti on(unsi gned char pul ses)

{

i f (hama >= pul ses)
tenp_fire = 1;

PACNT = O;

/**

* *
* Function: white |ine_detection() *
* *
* Description: This function checks for a white line. *
* If it sees a white line, it waits until *
* a black is seen before checking for *
* another white line. If a whitelineis *
* seen outside of a room the flag in_roonr
* is set and the nunber of rooms is *
* increnented. If in aroomwth a candle*
* and a white line is seen, the *
* white |line_candle flag is set. If ina *
* roomand not candle is in the rooma *
* white line will decrenent the in_room *
* flag back to O. *
**/
void white_ |ine_detection(void)
{
int i = 0;
/* Check the white |ine sensor */
if(white line == 1)
{
[* If first tine line is seen */
if(w==0)
{
[* If entrance to room increnment numof roons and in_room */
if(in_room== 0)
{
in_room=in_room+ 1;
num of roons = num of roons + 1;
}
[* If already in room */
el se
{

[* If fire in room set white |line candle flag */
if(tenp_fire == 1)
white |ine_candle = 1;
[* If no fire, decrenent in_room */
el se
in_room= in_rooml,

/* Set this flag so only one line will be counted */

w = 1;
b |
/[* Wait for end of line */
el se
w = 0;
}
/**********'k'k'k'k'k'k'k*****************'k'k************************
* *
* Function: ir_detection(des_speed) *
* *
* Description: This function goes toward the flame wth*
* a desired speed, adjusting speed using *
* ir sensor input to direct the robot *
* towards the flane. *
*

***/

voi d ir_detection(unsigned char des_speed)

{

int ir_error, des left, des_right;
int front_error;

/* Conpute the difference between ir sensor reading */

ir_error =ir_left - (ir_right-0x02);

/* Conmpute the desire left and right speeds using this ir
error */

des left = des_speed + Kir*(ir_error)/3;

des right = des_speed - Kir*(ir_error)/3;

/* Delay to help slow down the robot */
del ay(2);

/* Send desired speeds to the notors */
go(des | eft,des _right);

/**

* *
* Function: sense_candl e() *
* *
* Description: This function conputes the error between*
* the ir sensors and uses this error to *
* turn in the direction of the at tiny *
* increnents, until the error is |ess than*
* 2. Once this error is small, the value *
* of the ir sensors is conpared with a *
* threshold to make sure that the sensors *
* aren't seeing a reflection. If it is a *
* reflection, a flag is set to cause the *
* robot to turn away fromthe reflection *
* and continue checking. Once centered *
* and no reflection, the centered flag is *
* set. *
*

**/

voi d sense_candl e()

{
int ir_error, des_left, des_right;

/[* 1Ir sensors differ nore if candle is farther away */
if(white_|ine_candle == 0)

ir_error = (ir_left-0x06) - ir_right;
el se

ir_error =ir_left - (ir_right - 0x02);

/[* 1If error positive, turn right */
if(ir_error > 2)
turn_right();
el se
[* 1If error negative, turn left */
if(ir_error < -2)
turn_left();
el se
/* 1f centered, do threshold check for
reflection */
if(ir_left < threshol d)
reflection = 1;
el se
centered = 1;

/**

*

*

*
*
*
*
*
*
*
*
*

the room nunber that the candle is in.
Then check to see if the ir sensors are

*
Functi on: reflection_check() *
*
Description: This function sets a threshold based on *
*
*
*

greater than the threshold. |If
reflection turn away fromthe refl ection*
and continue to check. *

**/

voi d reflection_check()

{

/*

{

}

/*

{

}

/*

Room 1 */
i f(num.of _roonms == 1)
/* H gh threshold because its a small room */
t hreshol d = 0x30;
if(ir_right < threshold)
turn_left();
el se
reflection = O;
Room 2 */
i f(num_ of _roons == 2)
/* H gh threshold because its a small room */
t hreshold = 0x37;
if(ir_left < threshol d)
turn_right();
el se
reflection = O;
Room 3 */
i f(num.of _roons == 3)

{

/* Low threshold because | arge room */
t hreshol d = 0x10;
if(ir_left < threshol d)
turn_right();
el se
reflection = O;

/* Room 4 */
i f(num_ of _roons == 4)
{
/* Low threshold becuase | arge room */
t hreshol d = 0x10;
if(ir_left < threshol d)
turn_right();
el se
reflection = O;

}

/**

*

Functi on: turn_left()

alittle bit.

kkhkkkhkkhkhkkhhkkhkkhhkkhhkhkhhkhhkhkhhkhhkhkhhkhkhhkhhkhkhhkhhkhkhhkhhhkhhkhkhkkhhkhkhhkkihikhi*kx

S~ X * ¥ * *

*
*
* Description: This function just turns the robot |eft
*
*

void turn_left()

{
int des_left, des_right;

/* Sets flags saying which way it turned */
turned left = 1;
turned_right = 0;

/* Sets the desired left and right speeds to make it turn
left */

des_left = - TURN+Ox40;

des_right = TURN+Ox50;

/* Send desired speeds to the notors */
go(des_left,des right);

/**

*

*
*
*
*
*

Functi on:

Description:

void turn_right()

{

int des_left, des_right;

turn_right()

*

*

*

This function just turns the robot right*
alittle bit *

***/

/* Set flags saying which way it turned */

turned_right = 1;
turned_left = O;

/* Set the desired left and right speeds to nake it turn

}

right */
des | eft = TURN+Ox50;
des_right = - TURN+Ox40;

/* Send desired speeds to the notors */

go(des |l eft,des right);

/**

*

*
*
*
*
*
*

Functi on:

Description:

to turn it on.

bl ow_fan()

Then it delays for a

while and turns it back off.

int blow fan()

{

int out = O;

[* Turn on fan */
PORTEA = PORTEA | 0x04;
/* Delay for 8sec */

del ay(800);

[* Turn off fan */
PORTEA = PORTEA & ~0x04;

return(l);

*
*
*
This function sends a signal to the fan *
*
*
*

kkhkkkhkkhkhkkhhkhkhhkkhhkhkhhkhhkhkhhkhhkhkhhkhkhhkhhkhkhhkhhkhkhhkhhhkhhkhkhkkhhkhkkhhkkikhrkhik*kx

/

/**

* *
* Function: del ay(int ns) *
* *
* Description: This is a functions to delay for ns *
* m | liseconds *
**/
voi d del ay(unsigned int ns)
int i;
while (ms > 0)
i = D_1M5;
while (i >0)
=1 - 1;
m = nms - 1,
/******************************'k*****************************

* *
* Function: t one_decoder () *
* *
* Description: This function checks to see if there is *
* a correct tone for a |ong enough tine *
* peri od. *
R I I b b S I I S S R R I b S S R I S S S S S S kR S S S

/

int tone_decoder(int tone flag)

{
if(tone == 0)
tone flag = tone_flag + 1;
if(tone == 2)

if(tone_flag > 0)
tone flag = O;

return(tone_flag);

/**

*

*
*
*
*
*
*

Functi on: count _left_wall ()
Description: This function increnents the left_wall
count once a new left wall is detected

by the | eft sensor.

R R I b b S bk b b S b b S b Sk b S R Sk I b Sk b S b S b b b S b S b S b b S b b R Sk b

voi d count |eft_wall (void)

{

}

/* The distance of 0x13 is the distance for a wall */
i f(meas_dist_|I > 0x13)

{
[* 1f newwall increment left _wall _flag */
if(left_wall _flag == 0)
{
[* 1f two walls, the first roomis passed */
if(left_wall_count == 2)
num of roons = 1;
left_wall_count = left_wall_count + 1
left _wall _flag = 1;
}
}
/[* Wait for a new wall */
el se

left_wall _flag = O;

*
*
*
*
*
*
*

/**

*

*
*
*
*
*
*

Functi on: choose_routine()

Descri pti on: This function decides on the correct

routi ne based on number of left walls,
candl e seen, and candl e out data

R R I bk S bk b b I b S b S b S R Sk I b ik S b S b S b b b S b S b S b b S b R R e S b b

voi d choose_routine(voi d)

{

/* |If candle hasn't be outted */
i f(candl e_out == 0)

{

/[* 1f you haven't passed first room */

*
*
*
*
*
*
*

/

/

if(left wall _count < 3)

{

/[* If there is no fire in first room*/
if(tenp_fire == 0)

{
/[* 1If you are in front of first room*/
if(left_wall_count == 2)
routine = check first;
el se
routine = before_first;
}
[* If there is afirein first room?*/
el se
{
/[* Wait till you' ve turned the corner */
if(left_wall _count == 2)

/* Left wall follow until entrance of
room */
if(in_room== 0)
routine = go_to_first;
/* Go into room and extinguish */

el se
routine = put_out _first;
}
/[* WAit till you turn the corner */
el se
routine = before first;
}
}
/* You have passed the first room */
el se
{

/[* 1f not in aroom right wall follow fast */
if(in_room== 0)

{
hama = O;
count2 = O;
routine = after _first;
}
/* Find a room check it for hama */
el se
{

/* Check roomw th hama */
i f (candl e_check_done == 0)

{
if(count3 < 1)

/* Deciding what roomthe candle was in, go hone

routine = check_roons;

el se
routi ne = turn_away,;
}
el se
{
[* 1f no fire, turn away */
if(tenp_fire == 0)
routine = turn_away;
/* Fire, put it out */
el se
routi ne = put_out;
}

-> go hone */

room == 2)

routi ne = go_hone_2;

routine = go_hone_1;

room == 3)

routine = go_hone_3;

room == 4)

routi ne = go_hone_4;

}
}
}
/* Candl e out
el se
{
if(final _
el se
if(final _
if(final _
}

}

*/

/**

*

Functi on:

*
*
* Description:
*
*

voi d setup()

pwm set () ;
ad_set ();
rti_set();
pul s_set();

setup()

This function calls functions to setup
pwn A/D, rti, and pul se accunul at or.

R R I bk S b Sk b b I b S b S b S R Sk I b Sk b S b S b S b S b S b S b S b I R R b b b S b

*
*
*
*
*
*

/

/**

* *
* Function: pwm set () *
* *
* Description: Sets up the pwmfor a 1.0kHz pul se w dt h*
* nodul ati on on Port PPl and PP2. *
* Not e: Somet hi ng happened to channel *
* 0 & 1 on HC12. *
* They no | onger work. So we are using *
* channels 2 & 3. PWDTY2 = right notor *
* and PWDTY3 = | eft *
R I b b b b b b b b b S S R I b S S b b b b b b b S b b S S b Sk kb Sk kb Sk S b b Sk

/

voi d pwm set ()

{
PWLK & O0xCO; [* Choose 8-bit npde */

PWCTL = PWCTL &~ 0x08; [/* Choose left-aligned */

PWOL = PWOL & OxfO; /* Select clock node O for
Channel 2 & 3 */

PWPCL = PWPOL | OxOf; /* Choose polarity; Hgh to start
Channel 2 & 3 */

PWCLK = PWCLK | 0x28; /* select 1 khz for channel 1 */
PWCLK = PWCLK | 0x05; /* select 1 khz for channel 2 */
PWDTY1 = 0x50; /* duty cycle for channel 1; reg
Ox51 */

PWDTY2 = Oxf O; /* duty cycle for channel 2; reg
0x52 */

PVWEN = PVEN | 0x08; /* enabl e channel 3 */

PVWEN = PVEN | 0x04; /* enabl e channel 2 */

/**

* *
* Function: ad_set () *
* *
* Description: This function sets up the Analog to *
* Digital Converter *
*********************************'k'k'k'k***********************/
void ad_set ()
L
int 1=0;
/* Analog to Digital Converter set-up */
ATDCTL2 = 0xCQ0; /* powerup A/D */
ATDCTL4 = 0x01; /* 9 us conversions */
ATDCTL5 = 0x73; /* bit 3;1 chl; only continous; do
ei ght conversi ons*/
for (i= 0;i<100; i++); /* AD start up del ay */
}
/******************************'k*'k***************************
* *
* Function: rti_set() *
* *
* Description: This function set up the Real -Tine *
* i nterrupt. *
*********************************'k'k'k'k***********************/

void rti_set()

{
/[*RTl setup code */
RTI CTL = 0xO05; [* 16nms delay */
RTICTL = RTICTL | Ox80; /* eable RTI inturrpt */
RTI FLG = 0x80; /* clearing RTI flag*/

/**

* *
* Function: pul s_set () *
* *
* Description: This function sets up the pul se *
* accunul at or *
R R I I b S b I S S S I R S S b b b S S S b S S R I S S S

/

voi d pul s_set ()

{

/* code to set-up the pul se accumul ator */

PACTL = 0x50; /*enable pulse acc. ; event node; count

ri sing edge */

PACNT = O;
}

/**

* *
* Functi on: exti ngui sh() *
* *
* Description: This function blows out the candle, then*
* checks the ir sensors to make sure that *
* the candle is out. It sets the final *
* room based on the roomthat the candle *
* is in. *
*

***/

voi d exti ngui sh()
{
int out = 0;
i nt bl ow done = O;

[* Stop while you blow out the candle */
go(0x0000, 0x0000) ;

/* Do this as long as there is a flane */
whi l e(out == 0)

{
DBugl2FNP->printf("flag = %\ n\r", routine);

[* Turn on fan for a while */
out = blow fan();

[* Turn off fan */
PORTEA = PORTEA & ~0x04;

[* Check ir sensors */
if(ir_left < 0x10)

out = 1;
if(ir_right < 0x10)
out = 1;

}

/* Set final roomand other flags */
final _room = num of roons;

candl e_out = 1;

temp fire = 0;

/*****************************'k'k'k'k***************************
* *
* Functi on: go_to_candl e() *
* *
* Description: This function goes a given di stance at a*
* given speed. It is used to go inside the*
* white |ine around the candl e. *
*

**/

int go_to_candl e(int distance, unsigned char speed)

{

/* Use the ir detection function to go toward candle */
if(to_candl e < distance)

{
ir_detection(speed);
to candle = to_candle + 1;
return(0);
}
el se
return(l);

