
Table of Contents

Abstract 2
Introduction 2
System Diagram 3
Sensors 3

Wall Sensors 3
Frequency to Voltage Converters 4
White Line Sensor 7
Flame Sensors 8
Tone Decoder 9

Fire Suppression 10
Circuit Board Design 11

Frequency to Voltage Converters, H-Bridge, and 5V Regulator 11
White Line Sensor 12
Tone Decoder 12

HC12 Modification 13
Software Design and Testing 15
Conclusion 20
Appendix A 21

Code

2

Abstract

This semester our junior design class was tasked with building a robot to compete

in the Trinity College Fire-Fighting Home Robot Contest, as well as our local version of

the same contest. The robot was required to navigate a mock up house (without touching

the walls), find a candle, put it out, and return home. The robot was required to be

autonomous, have a closed loop motor control system, and sense its’ environment (non

dead reckoning).

Introduction

The first couple junior design classes were spent in lecture about the theory and

implementation of various aspects of the robot. We spent this time, a week or two,

considering our design. The first phase of our design was the mechanical aspect of the

robot. The second phase was the circuitry. The third phase was actually coding and

testing of our robot.

We were given a temporary plate to which we were to get a general idea of how

we wanted to build our final robot. We were given a plate that had previously been used,

so it was really difficult to mount anything where we need them to be. Most of the first

part of the semester we had tape and glue holding everything together. When we finally

received a new plate we were able to mount everything in the proper place with out any

trouble. If given the opportunity to build another robot, we would start with our final

plate to make better use of our time. The circuitry phase was reading and testing of all the

possible sensors and circuits. Finally, the third phase was the actual writing code and

testing the robot on the tables, in the hallways, and in the maze.

3

System Diagram

Sensors

Wall Sensors

In order to navigate through the maze, we needed some sort of sensor to tell us

where the walls were. The main part of our code also depended on seeing a left wall

Block Diagram

DLC Port 2

Tone Decoder

T Port 1,2

Phototransistor
White Line Sensor

Figure 1 System Diagram

Motors

H-bridge

Bits: 2, 3

PWM Port

Bits: 6, 7
(Direction)

Fan

Relay
From 9.6V Ni-Cad

Battery Pack

Bit: 4

Phototransistor
White Line Sensor

Bit: 5

S Port

GP2D12 x2
Side Wall Sensors

GP2D120
Front Wall Sensor

Bits: 3, 5, 7

Binocular, IR
Flame Sensors

Bits: 0, 1

Motor
Encoders

Frequency
to Voltage

Bits: 2, 4

A/D Port

HC12

Volage Regulator
12V in
5V out

12V Battery
Lead Acid

4

through a sensor. The sensors we chose to use were the Sharp GP2D120’s and the

GP2D12’s. We chose to use the 120’s since their range of view was on the short side. It

had a range of 4cm to 30cm, which provided more than a comfortable region since we

used a left wall following algorithm. We were lucky to select two 120’s that were had

very similar data curve. This was helpful so that in the event if we needed to switch the

left and right wall sensors for any reason, we could. (see Figure 2) Together, the pair of

these sensors helped keep our robot centered as it traveled through the hallways.

For our front sensor, we used the Sharp GP2D12. This sensor had a range of

10cm to 80cm, which was enough for telling us when our robot got too close to a wall as

it approached it. This larger range was necessary, so the robot would see the wall long

before it had to adjust the motors to avoid making contact. The data for this sensor can

be seen on Figure 3.

We chose these particular sensors because they worked on the infrared section of

the spectrum. This was beneficial because outside light and colors would cause little or

no interference.

5

Figure 3 GP2D12 Sensor

0

0.5

1

1.5

2

2.5

3

distance (cm)

Center Sensor

Figure 2 GP2D120 Sensors

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

distance (cm)

Left Sensor

Right Sensor

6

Frequency to Voltage Converters

Since we wanted to utilize closed loop speed control, we had to find a way to

collect speed data from the motors and send it to the HC12 for speed correction. We

figured that we could convert the frequency of the pulses sent out by the motor encoders

into an analog voltage that we could feed into our HC12’s A/D ports. Although this

method seemed repetitive, (converting a digital signal to analog and then back to digital)

we found that this would be the best way to simplify our code. Knowing that the HC12

would need motor speed data very continuously, we took advantage of the A/D ports very

high refresh rate and avoided using the cumbersome and pokey input capture code.

Figure 4 Frequency to Voltage Converters

0

0.5

1

1.5

2

2.5

3

3.5

4

33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Frequency (kHz)

Left LM2907

Right LM2907

7

Figure 5

White Line Sensor

We needed a white line sensor for a couple of reasons. We needed to be able to

tell when we entered and exited a room, and also be able to tell when we were within

twelve inches of the candle. To carry out this taske we built the sensor out of a PN168

phototransistor and an array of green LED’s. We mounted the PN168 in a hood to shield

it from the direct light coming from the LED’s. We also ran the signal coming from the

PN168 through a Schmidt trigger to give us a nice zero output if it did not see a white

line or a 5 volt output if it did. We then put everything together on a printed circuit board

and mounted that inside another hood to shield out any outside light. We took this entire

8

assembly and mounted it on the underside of the front of the robot so it would catch a

white line as it was moving forward.

Figure 6

Flame Sensor

Another integral piece of our robot was our flame sensor. This was especially

important so we could find the fire that our robot was to extinguish. For this application,

we again used the PN168 phototransistors. For this sensor, we used two of them

mounted side by side so a binocular vision would help us zero in on the flame. We

mounted the two PN168’s inside of a plastic hood that we made out of some scrap plastic

as seen in the diagram below. This method proved to work pretty well. The reading each

PN168 would take from the candle would be about five volts even at a distance over five

feet away. The only problem we encountered was the fact that outside light would

interfere with the sensor’s operation. To counter this, some additional shielding was

9

required. A piece of black paper to shield out light from the ceiling was more than

sufficient for this.

Figure 7

Tone Decoder

For bonus points we decided to employ a tone decoder which would start our

robot when it received a 3.5 kHz tone. A hand held buzzer produced the tone we needed

and the microphone connected to the tone decoder circuit received it. As long as the tone

was of the right frequency, it would produce a digital signal (low) and send it to the

HC12, which would start running our program. We found that there was no need to

amplify the 200 mVp-p signal produced by the microphone because the tone decoder was

10

designed to trigger with a 100 mVp-p signal. The fact that our tone decoder triggered only

when our tone generator was about 1 inch from the microphone proved to be very useful

in competition because we did not have to cover our microphone while other groups were

running.

Figure 8

Flame Suppression

For our flame suppression, we used a one ampere, six volt motor that we pulled

out of a radio controlled car. To the motor, we attached a propeller from a radio

controlled airplane. Together, the motor and fan produced enough of a wind to

extinguish the candle. This system worked so well, we could extinguish the flame from

over five feet away. Figure 9 6V 1Amp Motor

11

Circuit Board Design

Frequency to Voltage Converters, H-Bridge, and 5V Regulator

Because of our single plate design, we wanted to use very compact circuit boards

for our robot’s many subsystems. Also, we planned on putting as many subsystems on

each board as possible. We crammed the frequency to voltage converters, H-Bridges,

and the 5V regulator on a single board while understanding that we would have to be

careful since this board combined 5V and 12V components. All components that needed

5V could plug into a main 5V bus.

Figure 10 Frequency to Voltage Converters, H-Bridges, and 5V regulator

12

White Line Sensor

Our white line sensor also had to be compact enough to fit under the robot inside

some sort of hood. We were able to fit the whole board inside a film container and

mount it to the chassis with a single standoff.

Figure 11 White Line Sensor

Tone Decoder

Our tone decoder circuit board was small enough to mount to the fan motor mount

with one standoff. We pointed the microphone to the rear of the robot to allow the robot

to drive forward without hitting us.

Figure 12 Tone Decoder

13

HC12 Modifications

An interesting part of the semester was recapturing analog channels 0 and 1.

Step 1. Collect the following:

• Two M68EVB912B32 evaluation boards (one for the master and one as the slave)

• BDM cable with 2X3 header connector (included in your HC12 cardboard box)

• A 11.5V source and a 5V source

• A few single header (f-f) connector wires

Step 2. Configure the boards

• On the Master:

Set the jumpers W4 = 1 and W3 = 0

• On the Slave (the board to be programmed):

Set the jumpers W4 = 0, W3 = 0, W8=11.5V(i.e. Vpp), and W7=Vpp

• For the BDM cable:

Make the connections such that the Master has BDM out connected to the BDM

in on the Slave.

• Power up the two boards and the 11.5V source (could use a prototype board in

Digital Lab).

 Step 3. Download the new Debugdlc.s19 file

• Startup a terminal window (appropriately configured for the HC12)

14

• Type the following as illustrated below (with a return after each line)

R> STOP

S> FBULK

S> FLOAD

• Then download the Debugdlc.s19 file (send text file using Windows 3.11 terminal

using the option for waiting after each line ...)

Step 4. Power down and disconnect 11.5V source and reset W7 to VDD

Step 5. Remove the resistors R7 and R8 and place 2-header pins in their place

Step 6. Wire wrap pin at R7 to PDLC0 and pin at R8 to PDLC1

This gave us two extra A/D channels. Because we had one HC12 with the memory

expansion, we first tried this on an HC12 that did not have the extra memory. We did this

just incase we did something wrong and we did not loose our most important board. Later

in the semester we got a lot of experience loading the Debugdlc.s19 file because we had

done it on 5 more HC12 boards for other groups in the class. Once we recaptured these

channels on our unexpanded HC12, we wrote our wall following functions and our room

scans with this board.

We did not find any problems with recapturing these channels, so we felt

confidant enough to modify our expanded board. This is where we found some problems.

On the original board, we never lost bytee, but our expanded board would lose bytee all

the time. We talked to Dr. Rison about this problem and he gave us a different version of

15

Debugdlc.s19 so we would never use bytee on a startup. This did not work as well as we

had planned. When we loaded this the second time we could erase the write protected

area, but we were unable to erase the section that was not write protected. We were

unable to load the new Debugdlc.s19 file into our HC12. We then reprogrammed our

HC12 with the original Debugdlc.s19. We could not find a definite reason why we

would lose our byteee. Before we went to Trinity, we would lose it if we turned the

power to our robot on and off really fast, or occasionally when we would press the reset

button. While we were at Trinity we had to reload byteee every time we would reload our

program. After we returned from Trinity we have not reloaded byteee.

Software Design and Testing

Throughout the semester, we spent the majority of our time and energy on the

software. For everything that was implemented in code, we would first write a small test

program. This was very helpful when we were debugging later in the project. The

software was probably the most difficult aspect of the project, but it was by far the most

fun. After the competition at Trinity, we had a better understanding of the weaknesses of

our robot and completely rewrote all of the code before the local competition.

To navigate the maze our robot would left wall follow the first 3 rooms. After

leaving the 3rd room, we would right wall follow until the right wall would disappear. We

would then drive straight until we found a front wall. At that point we would then begin

to right wall follow into the 4th room. We choose to left wall follow through the maze

because when we first got our left and right wall following functions working, we found

we could left wall follow through the maze 3 seconds faster than we could right wall

follow through the maze at the same speed. Because our white line sensor was activated

16

by a Schmitt trigger, we used the falling edge of IC1 to determine if we were entering a

room. To actually find the white line around the candle we ran the same input wires to

ports of our HC12 and disabled our interrupt.

The best part of our code was the wall following functions! Because of the closed

loop design of our robot, we had no problems navigating the maze. The first function

that we were able to successfully test was the left wall function. In this portion of the

code our center sensor was dominant over the left wall sensor. If there was a wall directly

in front of it, our robot would spin until a thresh hold was met. We had two separate

Figure 13. Flowchart for our program

Wall Follow

Drive
Forward

Scan

Attack
Candle Extinguish

Go Home

White
Line?

Candle?

Start

17

constants for this. The first constant was used to find out if we were too close to the wall.

The second constant was smaller, and was continuously compared to our front sensor

values to make us turn faster. Basically what we did was make it think it was closer to the

front wall than it really was. We would then use our left sensor to judge how far away

from the wall we were and then use our proportional closed loop equations to adjust

towards or away from the wall. The second function that we were able to successfully test

was the right wall function. This function worked exactly like the left wall except we

would look at the right wall sensor.

The next function that we were able to create was drive forward. This function,

depending on the values that were passed to it, would drive forward a small distance

checking to ensure it was the proper distance away from the chosen wall. This function

was very useful because we would call it to get off the home circle and when we drove

into rooms to check for a candle.

The scan function was used to check if there was a candle in the room. This

function went through a lot of modification throughout the semester. When we originally

wrote this portion of the code, we would pass it a value to scan different ways.

Originally, in the fist three rooms, we would scan and turn left about 45 degrees and then

turn and scan to the right about 225 degrees. In the fourth room we would turn and scan

to the right first, then we would turn and scan to the left. Originally we would

immediately stop when both sensors were above a thresh hold, and call our Attack Flame

function. Later we found out that this would cause us some problems. If we were

scanning room 1 and the candle was in the first corner in room 2, our robot would find

the candle in room 2 while still in room 1, and drive towards it until it found a white line.

18

It would then turn on the fan and extinguish the candle. The only problem was we were in

the doorway of room 1 and we needed to be within 12 inches from the candle before it

could be put it out. To fix this problem in room 1 we would stop scanning after about

200 degrees while we were turning to the right. While we were at Trinity we had a

problem with candle reflections on the walls in the smaller rooms. To solve this problem

we changed the scan function to turn toward the left wall and stop. Then it would start

turning to the right and scanning, storing the position of the robot when we would find

the highest value of our sensors if they were above the fire thresh hold. If a candle in the

room, we would then turn back to the position of the highest value of the sensors and call

our Attack Flame function. This slowed our robot down a few seconds, no matter what

room it was in.

 Our Attack Flame function was really solid. We would drive toward the candle

using our fire sensors to direct us and we would check to see if we were too close to a left

or right wall. Our robot would run straight for the candle. In certain corners of all rooms

if we tried to drive straight toward the candle our robot would hit the wall before it could

find the white line surrounding the candle. To fix this problem, we would check how

close we were to a wall. If we were too close we would drive along side of it until we

found a white line. This added feature of in this function was well used when we were

using our original Scan function. When we found a white line we would call our

Extinguish function.

The Extinguish function would turn on the fan and check to see if the fire sensors

were below a given thresh hold. If they were not below the thresh hold, our robot would

turn on the fan a little longer. If the candle still was not out, we would turn to the left and

19

right while the fan was on. We never had a problem putting the candle out on the first try,

so we took out the turning part of the program because of safety reasons. We also took

out this part of the program because we would blow the candle around the room, then run

into it when we were trying to leave the room. This would put wax all over the floor and

really disrupt other groups when they were testing in the maze.

Our robot would keep track of which room it was in. When it put out a candle it

had a different path home according to which room the candle was in. If the candle was

in room 1 we would turn left about 90 degrees and drive until our front or right sensor

found a wall. We would then right wall follow until we found the home circle. If we were

in room 3 or room 4 we would turn right 90 degrees, drive forward until the front or left

sensor found a wall, then left wall follow until we found the home circle. In room 2 we

would turn right 90 degrees, drive forward until our center or left sensor found a wall,

then we would left wall follow out of the room. When we were in the hall way we would

act like a pinball. We would check both the left and right sensors, only turning the robot

away from the sidewalls. Basically bouncing down the hallways until we found a wall

directly in front of us. When we found this wall we would then start to left wall follow to

the home circle.

Some of the bonus features of our robot were never needed. If our robot checked

all the rooms for a candle and did not extinguish a candle, it would go to the home circle,

stop, turn around and begin to check all the rooms again, lowering the fire thresh hold.

This feature of the code was never used outside of testing, or demonstrating our robot to

the faculty. It was a really neat idea, but we never had to use this during competition.

Another feature of our robot was the ability, after it extinguished a candle and returned to

20

the home we could then place the robot back into the center of the circle and immediately

tone our robot again without having to load the program after each run.

Conclusion

Our robot was a definite success. We started out with the goal of building a robot

to win a competition, and that's what we did. Our robot took fourth place at the National

Competition and first place at the local competition. We are happy with our results. If

we had an extra week to work, we could have cleaned the robot up and make it more

presentable. If we had it to do all over again we would design from the get go to be more

compact and tidy.

