
- useful for maintaining robot's speed in the presence of uncertainty (ramps, battery voltage variations, robot weight variations, ...)
- objective is to vary PWM duty cycle such that motor moves at a specified (desired) speed
- simple proportional type control is presented

- simplest to leave speed measurements in microcontroller units as opposed to converting them to rpm or rad/sec
- start simple try to relate PWM duty cycle to measured motor speed S_M by generating PWM signal for many duty cycles and recording the resulting measured motor speed S_{M} Duty Cycle C

	Duty Cycle	ь з _М
	0	0
	10	2
	20	15
	30	28
• determine constant K relating duty	40	43
cycle and measured speed such that		

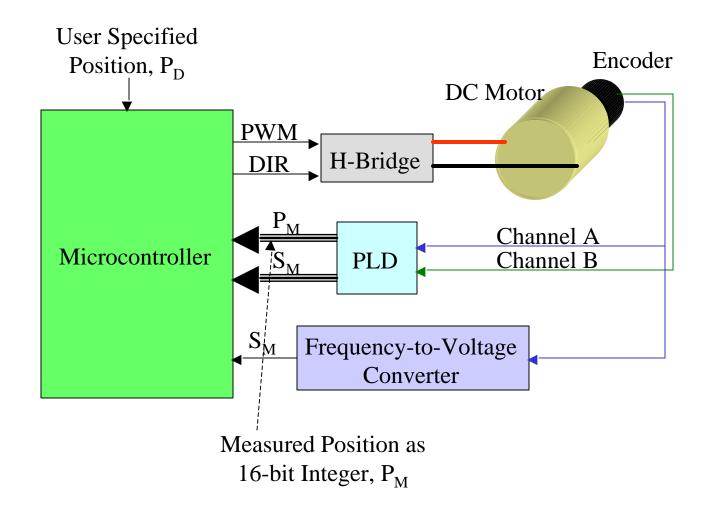
cycle and measured speed such that

duty cycle = $K S_M$ (K \approx 1, for example)

• given K and desired speed S_D (in same units as S_M), the appropriate duty cycle to apply can be found from

duty cycle = $K S_D$ \triangleleft Open-Loop Control

- open-loop speed control is great for motor system that never changes
- our motor system is likely to vary
 - battery voltage will drop as robot operates
 - load will increase/decrease with ramps and robot weight
 - ⇒ need a mechanism to adjust speed based upon what speed robot is actually moving (too slow \rightarrow speed up, too fast \rightarrow slow down)
 - \Rightarrow need feedback (closed-loop) control
- simple closed-loop control approach add proportional feedback control to open-loop control

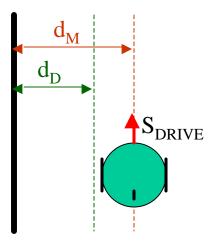

duty cycle =
$$\underbrace{K S_D}_{\text{predicted}}$$
 + $\underbrace{K_P(S_D - S_M)}_{\text{duty cycle}}$
duty cycle adjustment

• K found by relating motor speed to duty cycle, K_P found experimentally \rightarrow note: K, K_P need to be determined for each motor independently

DC Motor Position Control

- useful for fixed distance movements such as rotating robot 180° to exit a room after checking for candle
- objective is to vary PWM duty cycle such that motor rotates specified angle
- simple scheme utilizing previous closed-loop motor speed control is presented

DC Motor Position Control

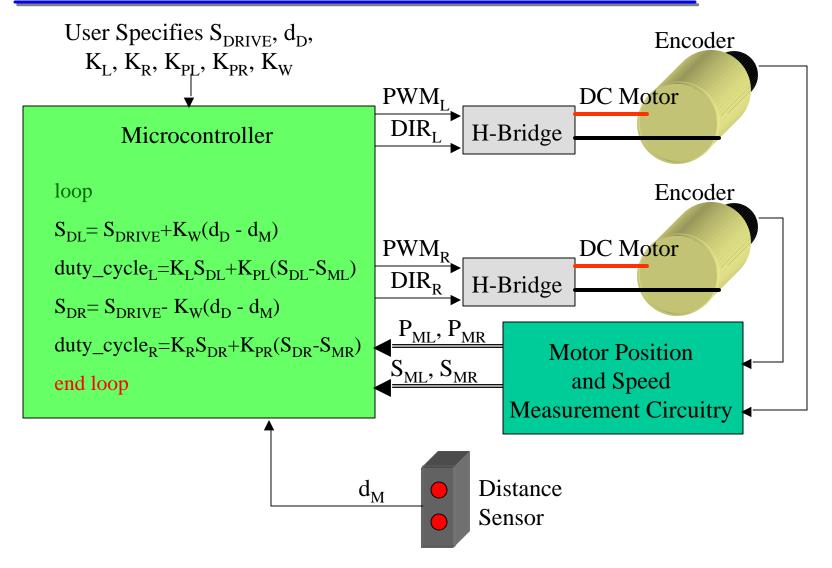


DC Motor Position Control

- simple position monitoring scheme
- to rotate "close to" a desired amount P_D:
 - \rightarrow send a speed S_D to closed-loop speed controller
 - \rightarrow stop motor (S_D = 0) when measured motor position P_M reaches P_D
 - \rightarrow dependent on friction (or braking) to stop motion
- robot drive system will typically have a fair amount of friction, so motion will stop close to P_D
- more advanced and accurate closed-loop position controllers can be implemented to specify duty cycle directly

Wall-Following Control

- useful for moving along a wall at a constant speed S_{DRIVE} and keeping a specified fixed distance d_D away from it
- differential drive is assumed, but can easily be extended to other wheeled robot designs
- "outer-loop" approach presented is built around "inner-loop" closed-loop speed controller



• left motor speed S_{DL} and right motor speed S_{DR} are determined from the measured distance to the wall d_M via (for left wall-following):

 $S_{DL} = S_{DRIVE} + K_W(d_D - d_M)$ $S_{DR} = S_{DRIVE} - K_W(d_D - d_M)$

• constant gain K_W determined experimentally

Wall-Following Control

