
Ball/Hole Locator Module Page 1 5/6/2002

Ball/Hole Locator Module: A Junior Design Project.

Team A

Kurt Caviggia

Jonathan Deming

Azmat Bhatty

EE 382 Introduction to Design

Spring 2002

Dr. Wedeward

Dr. Rison

Ball/Hole Locator Module Page 2 5/6/2002

Abstract:
 The New Mexico Tech Electrical Engineering Department Introduction To
Design course set forth the design problem of building a fully autonomous golfing robot.
The robot is designed to receive GPS coordinates of the Ball and Hole and navigate with
the aid of GPS and visual detection methods to retrieve the ball and deposit it in the hole.
The project was broken into four major subsystems: Communication, Navigation,
Chassis, and Ball & Hole Locator. This paper discusses the details relating to the Ball
and Hole Location Subsystem. Details include hardware and software design, theory of
operation, interfacing, and associated design costs.

Ball/Hole Locator Module Page 3 5/6/2002

Table of Contents

1. Project Breakdown………………………….………5

1.1. Total System……………………..……….…...….5
1.2. Ball and Hole Location Module…………….…..…6

2. System Overview……………………..……………..8
2.1. System Requirements & Design Goals…………...…8
2.2. Subsystem Functions……………………..………...9

2.2.1. Camera……………………..…………………9
2.2.2. Camera Interface……………………..….…....10
2.2.3. Camera Motion Control………………………..12
2.2.4. Interfacing with the Navigation Subsystem………...13
2.2.5. User Interface……………………..………….15

2.3. Subsystem Integration……………………..……..16
2.3.1. Power Distribution……………………..….…..16
2.3.2. Mechanical Layout……………………..……...17

2.4. Software Design……………………..…………....19
2.4.1. Algorithm Overview……………………..……..19
2.4.2. Camera Communications……………………….20
2.4.3. Searching……………………..……………...22
2.4.4. Tracking……………………..………………28
2.4.5. Chassis Control……………………..….……..30

3. Resource Allocation……………………..…….…..32
3.1. Power Distribution……………………..…….…..32
3.2. Cost Summary……………………..……………..33
3.3. Division of Manpower ………………………..…..34

4. Testing……………………..……………………….34
4.1. Conditions……………………..…………………34
4.2. Tests performed……………………..……………35
4.3. Results……………………..…………………….35

5. Conclusion……………………..…………………..37
6. List of Tables……………………..………………....4
7. List of Figures…………………………..……….….4
8. List of Appendices …………………………………4

Ball/Hole Locator Module Page 4 5/6/2002

List of Figures

 Figure 1: Project Breakdown…………………………………….....…..5
 Figure 2: Ball/Hole Locator Block Diagram………………..……...…..7
 Figure 3: CMU Camera and CMOS Image Sensor…………..…...…..8
 Figure 4: Setup of the DUART………………..…………………..…...11
 Figure 5: Modified 68HC12 Memory Map………………..……...…..12
 Figure 6: Timing Diagram for Slave Out Data Transfer………..…..13
 Figure 7: Timing Diagram for Master Out Data Transfer……....….14
 Figure 8: Power Distribution Diagram………………..………….…..16
 Figure 9: Component Layout………………..…………………….…..18
 Figure 10: Flow Diagram for Scanning………………..………….…..19
 Figure 11: Flow Diagram for Camera Communication………….…..22
 Figure 12: Search Sector Layout………………..……………………..23
 Figure 13: Repositioning Diagram………………..……………….…..24
 Figure 14: Flow Diagram to Find Target………………..…….….…..28
 Figure 15: Flow Diagram for Camera Tracking………………....…..29
 Figure 16: Data Packet Map………………..………………………….31

List of Tables
 Table 1: Indicator Description………………..……………………….. 15
 Table 2: Register summary for a using single channel DUART ….….20
 Table 3: Summary of Commands for Color Tracking …………….…27
 Table 4: Data Packet Description……………………………………....31
 Table 5: Power Budget……………………………………………….…32

Appendices
 Appendix A: Serial Communication Schematics and Altera Code……….38
 Appendix B: Mechanical Drawings and Pictures……………………….…43
 Appendix C: Source Code for the MC68HC12…………………………….45
 Appendix D: Schematics………………………………………………….….60
 Appendix E: Printed Circuit Board Artwork………………………….…..61
 Appendix F: Project Costs……………………………………………….….62

Ball/Hole Locator Module Page 5 5/6/2002

1. Project Breakdown

The following section is broken into two parts. The first involves the robot as a fully

integrated system. A short definition of the role of each module is given. The second

part of this section goes into detail of the Ball/Hole Location Module.

1.1. Total System
The robot is composed of four key parts each with their own primary functions.

Figure 1 gives a diagram of how each part of the robot fits:

Figure 1: Project Breakdown

Ball/Hole Locator Module Page 6 5/6/2002

• Chassis-The purpose of the chassis is move a direction and distance specified by

navigation in addition to capturing the ball or dropping the ball in the hole. The

chassis is also responsible for supplying power to all the other modules.

• Communication-The primary purpose of the Communication Module is to send

wireless data (GPS coordinates) to the Navigation module for processing.

Communications transmits over a wireless link data that gives the status (position,

speed, direction) of the robot to a remote base station.

• Navigation- Navigation’s primary purpose is to calculate the direction and

distance to travel using GPS guidance. Navigation is also responsible for

controlling all of the inter-module communications on the robot.

• Ball/Hole Location- The Ball Hole Locator Module is responsible for finding the

golf ball or hole once navigation is as close as GPS can get. The module scans for

the desired object, and then tells the chassis where to go so that the ball can be

picked up or dropped into the hole.

1.2. Ball and Hole Location Module

The general structure of this module is shown in Figure 2 as a block diagram. The

module consists of four pieces that combine to make the Ball/Hole Locator

Subsystem. The MC68HC12 microprocessor is the central part of the subsystem

which controls the flow of information linking all individual systems together.

Ball/Hole Locator Module Page 7 5/6/2002

Figure 2: The Ball/Hole Locator Block Diagram.

The camera is the focal point of the design. It provides image data including target

coordinates and mean color data. A serial interface was implemented so that camera

commands could be sent to the camera and picture data could be received by the

68HC12 for processing. The microcontroller analyzes this data to determine which

way to move the camera to keep the target centered in the field of view.

At the same time that the camera is constantly being repositioned, data is being

generated and packaged by the 68HC12 so that it can be passed to the chassis via an

interface to navigation. This allows the chassis to be “guided” to the final position of

the ball or hole. The design also includes a user interface consisting of eight LED

indicators and a level shifted serial port, which allows for convenient monitoring of

the internal systems while the module is active.

Ball/Hole Locator Module Page 8 5/6/2002

2. System Overview
The following section outlines the design of the Ball and Hole Locator Module.

Details regarding system requirements, hardware, and software design.

2.1. System Requirements & Design Goals

The specified task for the Ball and Hole Locator was to pinpoint the golf ball or

hole visually once navigation gave control of the robot to the ball and hole locator

subsystem. The navigation subsystem was able to get within 3 meters of the ball or

hole assuming that the GPS (Global Positioning System) receiver was receiving a

WAAS (Wide Area Augmentation System) signal. Additional size limitations were

imposed by the chassis. In addition to the requirements defined by the problem and

limitations set by the technology a list of design goals were defined to meet in

addition to the basic system requirements. The following is a summary of

environmental conditions as well as these requirements and goals.

Environmental Conditions

 The horizon is not controlled and may contain buildings and various

vegetation

 The ball would be on green grass (not dying)

 Testing would be conducted from 11 a.m. until 5 p.m. in various weather

conditions.

System requirements

 Upon request from navigation, find a Ball or Hole within a 3 meter radius.

 The golf ball will be and unmodified standard white golf ball.

 The hole dimensions will follow the guidelines set by the PGA.

 The hole will be marked using a roll of paper inside of the hole that stands

3cm above the plane of the grass. The diameter of the roll will be equal to the

diameter of the hole itself.

Ball/Hole Locator Module Page 9 5/6/2002

 Once the ball or hole is found, Send commands the chassis to guide it to the

ball or hole.

 Sensors must work in outdoor conditions.

 All electronics must fit within a 3”x5”x7” aluminum enclosure.

 Voltages available from chassis include 5,6, and 12 Volts DC.

Design Goals

 Simple interface to robot: One power plug and one data plug.

 Self contained modular design.

 Utilize printed circuit board technology whenever possible.

 Use indexed locking wire connections.

 Keep all wire bundled in harnesses whenever possible.

 Be resistant to noisy or faulty power.

 Use optical isolation on any motors or servos.

 Keep design easy to fix, test, and debug.

 Make all parts physically robust, reliable, and easy to disassemble.

2.2. Subsystem Functions

2.2.1. The Camera

The CMOS sensor chosen for this project was a pre-built camera with several

features. Among them, the most relevant include

• Ability to track a defined color at 17 frames per second.

• 80x143 Pixel Resolutions.

• Serial Communication Port.

• Outputs size data and center coordinates of an object.

• 75ohm output for live video feed to a TV.

• Pre-programmed 75MHz Video Processor.

Ball/Hole Locator Module Page 10 5/6/2002

Fig

Figure 3: CMU camera CMOS Image Sensor.

Features including the ones mentioned above made the CMU camera a

feasible solution to the problem of image detection. The ability to communicate

through the serial port made it ideal for use with the HC12 microprocessor.

Also, a fast video processor did a much better job processing raw image data

with the HC12. A Java GUI program included with the camera made testing and

debugging simple. The outdoor testing helped to develop an acceptable routine

for scanning and tracking. The CMOS camera was the most feasible solution to

the problem of image detection.

2.2.2. Camera Interface

In order to control camera commands such as color tracking and auto gain, a

Serial Communication Interface (SCI) was required. The camera has a serial

output for both TTL/CMOS and level shifted data. Also, the camera baud rate

can be changed between 38400 bps and 115000 bps by changing a jumper

which can be found in the camera documentation. The 68HC12 does contain a

SCI and a Serial Peripheral Interface (SPI). Since the choice was made to use

the SPI for communication to navigation, a Serial port expansion for the

68HC12 was required.

Thus, the most widely used device for a serial interface is the Universal

Asynchronous Receiver/Transmitter (UART). The UART used in this

Ball/Hole Locator Module Page 11 5/6/2002

application is the National Semiconductor PC16552D. This part is a DUART

which contains dual serial ports. The DUART was selected because of the extra

serial port and adjustable baud rate. The DUART expansion was built according

to the following design criteria:

• Two channel selection - the expansion should include both ports for easy

of use.

• Level Shifted output - A level shifted output will assist in debugging codes

and gives the ability to watch conversations between the 68HC12 and the

camera.

• A simple hardware interface – one plug between the 68HC12 memory

expansion and the UART.

The UART was wired wrapped in the prototype area of the 68HC12

evaluation board according to the diagram show below in Figure 4. An external

oscillator of 18.432 MHz was used to generate the baud rates of 38400 bps or

115000 bps. Also, a MAX233 dual level shifter was built to provide a level

shifted output for both channels.

Figure 4: Setup of the DUART

Ball/Hole Locator Module Page 12 5/6/2002

The expansion required making three main

changes to the Altera chip on the memory

board. First, the memory map was changed to

include room for the new registers as shown

below in Figure 5. Only even address were used

since the lower eight data bits were wired into

the data pins of the DUART. Second, an address

decoder was built to provide the chip select and

channel select for the DUART. Finally, general

I/O expansion port B was wiped out so that

external pins such as reset, chip select, channel

select, and read/write could be wired to the

DUART. The final changes to the Altera code,

including the address decoder, can be found in

Appendix A, Figure 3.

After the Altera board was re-programmed, the parts were populated on the

microcontroller and wire wrapped on the board. A cable was made so a simple

connection could be made from the memory expansion to the DUART. A

detailed schematic of connections and a picture highlighting the components

can be found in Appendix A, Figure 2. The registers on both channels were

checked by writing and reading from the appropriate memory locations. The

divisor registers can be set to give either 38400 bps or 115000 bps. Also, the

data ready bit was checked as a flag to determine when the UART received new

data. For more information on how the DUART was programmed please refer

to section 3.4.2.Camera Communications.

2.2.3. Camera Motion Control

The camera motion control system is used to keep the camera pointed at the

target (ball or hole). This is done using an Elevation over Azimuth positioning

system, or gimbal driven by two standard servos. The servos are controlled by

Ball/Hole Locator Module Page 13 5/6/2002

the Pulse Width Modulation Subsystem (PWM) of the 68HC12. This PWM

signal is fed from the HC12 through an Optical Isolator to the servos. The

servos require a 50Hz signal with a pulse width of 0.7ms to 1.7ms for the full

range of movement. To get this kind of resolution within a 20ms period, one

16-bit channel is used per servo. The result is that if the duty cycle is changed

by a decimal value of 18, the servo moves 1 degree. It is important to note that

the optical isolators invert the logic signal that they receive; as a result, positive

polarity must be used when setting up the HC12 PWM subsystem. See

Appendix B for detailed pictures of the gimbal.

2.2.4. Interfacing with the Navigation Subsystem

Communication with navigation is achieved using synchronous serial

communication. Navigation controls the S Clock, Slave Select, and the Baud

Rate used during data transfers.

The communications follows a transfer protocol as follows:

• The Navigation module is set up as a master and the Ball/Hole module set

 as a slave.

• Next, the MSTack line is raised in order to acknowledge that navigation

 has data that is ready to be sent.

• When the slave is ready to receive data, SLAack is brought high.

• Navigation then sends the data.

• The MSTack line is lowered, indicating that the data transfer is complete.

Figure 6: Timing Diagram for a Slave out Data Transfer.

Ball/Hole Locator Module Page 14 5/6/2002

Sending data to the navigation module follows a similar process:

• The Navigation module is set up as a master and the ball/hole module set as

a slave.

• Next, the SLAack line is raised in order to acknowledge that Ball/Hole has

data that is ready to be sent.

• When Navigation is ready to receive data, MSTack is brought high.

• Ball/Hole then sends the data.

• The SLAack line is lowered, indicating that the data transfer is complete.

Figure 7: Timing Diagram for a Master out Data Transfer.

Ball/Hole Locator Module Page 15 5/6/2002

2.2.5. User Interface

To make the manner of troubleshooting the module easier, eight Light

Emitting Diodes (LEDs) were added. The LEDs indicate the current state that

the module is in. The current function would be indicated by the indicator

LEDs. The eight specific functions shown by the LEDs are show below in

Table 1. There are eight specific functions that are indicated by the LEDs.

Indicator Name Description
1
(Top Indicator)

Reset
Camera

Hard Reset on camera has occurred

2 Correct

Gimbal

Camera is correcting the gimbal

3 Scan Module is currently scanning

4 Send Module is sending data to navigation

5 Wait Module is waiting for a trigger

6 Lock Object of interest has been found

7 Send to

Camera

Command is being to sent to camera for

processing

8
(Bottom

Indicator)

Receive

from

Camera

Data is being received from camera

Table 1: Indicator Description

Ball/Hole Locator Module Page 16 5/6/2002

2.3. Subsystem Integration

2.3.1. Power Distribution

Power is supplied by the chassis. The Ball/Hole Locator Module requires two

supply voltages. A 5 volt supply is used by all the electronics in the system.

The 6 volt supply is used to power the servo motors. This was done to isolate

any noise generated by the servos from the sensitive electronics.

Power is fed through a fuse, through the main power switch, and on to the

power distribution board. The Power distribution board provides a place for all

of the internal components to be connected to power. The board filters the 5

volt power with a 100uf capacitor and the 6 volt supply is filtered by a 3300uf

capacitor. Figure 8 shows the flow of power to each subsystem.

Power From
Chassis

Power
Distribution

Board

+6 Volts+5 Volts Optical
Isolation
Board

Servos

HC12
Interface

Board

HC12
Evalboard

Board

Memory
Expansion

Camera

UART

Figure 8: Power Distribution Diagram

Ball/Hole Locator Module Page 17 5/6/2002

2.3.2. Mechanical Layout

The specifications defined by chassis to fit all the electronics within a

3”x5”x7” aluminum enclosure is the main limiting factor for the layout of the

electronics package. The exception to this space limitation is the camera and

the camera positioning system. The different components within the electronics

package are laid out to minimize the amount of “spaghetti wire” in addition to

keeping the wires used for inter-device connections to a minimum.

The HC12 interface board is used to connect the HC12 Evaluation board to all

other components in the electronic package excluding the UART. The UART is

built onto the Evaluation board in the prototype area as well as being connected

by a 10 pin ribbon cable to the memory expansion board. Using an interface

board is beneficial for several reasons. First, it allows other components to be

connected and disconnected to the HC12 all at once, as well as preventing

improper connections. It also allows the use of a variety of different types of

connectors, so that no plugs can be plugged into the wrong place or with the

wrong polarity. Finally, the board provides space for trivial circuitry such as

pull down resistors and noise filters.

Below is a diagram (figure 9) that illustrates the layout of all the major

components of the Ball and Hole Locator. For detailed explanations of what

each subsystem does refer to section 3.2 Subsystem Design.

Ball/Hole Locator Module Page 18 5/6/2002

Figure 9: Component Layout

Ball/Hole Locator Module Page 19 5/6/2002

2.4. Software Design

2.4.1. Algorithm Overview

The scanning algorithm follows the process shown below in Figure 10. The

scan starts by waiting for a request to find the ball or the hole, then the scan

moves to an initial sector and looks for any bright objects. If the camera finds a

bright object with a specific size and enough confidence, then it “locks” unto

that target. The camera will keep moving to a new sector when there is “no

lock” in the current sector. If the camera completed the scan, it sends a

command requesting the robot to reposition and the scan is run again. When a

“lock” is made the position of the object is found and the camera is moved to

directly at the target. The same “lock” process is used while tracking to verify

that the target has not been lost. When the object is found the program will go

back into a “wait” state until another request is made. Any time the lock

becomes lost during the camera correction process, then the object is assumed to

be “lost” and the scan restarts.

Lock?

Scan

Reposition
Camera Lock?

Yes

Yes

Yes

No

No

No Done?
Wait
for

Request

Scan
Done?

Reposition
Robot

No

Yes

Run Scan

Wait
for

Request
Begin

Figure 10: Flow Diagram for Scanning.

Ball/Hole Locator Module Page 20 5/6/2002

2.4.2. Camera Communications

The camera communication software is designed for use with a National

Semiconductor DUART (See 3.2.2. Camera Interface). Both channels have

eight registers through which setup, transmitting, and receiving are controlled.

These registers are defined in Table 2.

Table 2: Register summary for a using single channel DUART.

Setup of the DUART for communication requires that several registers are set

correctly. The camera requires a baud rate of 38400 or 115200 bps with no flow

control, one start bit, one stop bit, and no parity. In the main program (See

Appendix C,) DLAB was enabled in the line control register so that the baud

rate can be set. Depending on the clock source used, the correct values must be

set in the divisor registers (for 18.432MHz, a value of decimal 30 was written in

the divisor registers to give a baud rate of 38400 bps). Then concurrent write

Ball/Hole Locator Module Page 21 5/6/2002

was turned off1. After the baud rate was set, DLAB was cleared so the

Receive/Transmit register can be used. Interrupts were not needed for

communication. The FIFO buffer was enabled in the FIFO control register. The

interrupt enable address was checked to confirm that no interrupts or data was

enabled. When new data is ready for reading from the receive register the

receive line status bit is set. The register is used as a method for checking for

new data.

Once the DUART was set up, two functions had to be written: send

commands and receive data. The code used in the main program to send a

specific command to the camera needed to be as painless as possible. The

command function was the result of this requirement (see Appendix C).

Command works by receiving a string of a variable length. This string is then

clocked out, one character at a time, into the Receive/Transmit register. This

continues until the function reaches the end of string marker. The crucial step

was to add just enough of a delay so that the UART doesn’t write too fast, hence

missing a key part of the string. Therefore, a small 5 ms delay was added

between successive writes to the receive/transmit address. The final format for

calling the function was: command (string); where string can be any length or a

variable. There are two methods implemented to help trouble shoot the

command function. First, an optional printf() command was used to print each

character as it was clocked out. Also, since the port was level-shifted, the string

could be watched separately from another computer setup as an “observer”.

For the receiving program, assuring all data arrives at the correct time was the

hardest part. The receiving program was the solution to this problem (see

Appendix C). The receive function uses a string of twenty-five characters

named camdat when called. The parameter passed to this function is the number

of characters to be received. In order to get the data at the correct time, the

interrupt enable register is checked to see if the receive line status bit is set. If

the flag went high, then data is ready and is immediately read into camdat. This

1 NOTE: the DUART will not operate correctly if concurrent write is enabled. Also, when disabling
concurrent write the divisor registers or DLAB may reset. Therefore, it is recommended that both divisor
registers and alternate function registers continually be written to until set correctly.

Ball/Hole Locator Module Page 22 5/6/2002

happens until all required characters are received. Thus, the format for this

function call is receive(n), where n is the number of bytes. Figure 11 shows the

flow diagrams of both the command and receive functions.

Receive
Command

 End
of String?

Transmit
Character

Delay 5 ms

Print
character
(optional)

Return
YES

NO

Receive Length

Done Receiving?

NO

Return

YES

Wait for flag

Receive
Character

Figure 11: Flow Diagram for Camera Communication

2.4.3. Searching

In order for the camera do a successful search, the camera must be able to see

the entire search area one way or another as well as having a routine to “look”

for a target (ball or hole) within each “frame” or field of view. The first half of

this section will describe how the camera is repositioned from one search area to

the next. The second half of this section will describe the process for finding a

target within each sector.

Ball/Hole Locator Module Page 23 5/6/2002

Repositioning the Camera

Searching is done by one of two ways. The first is using the gimbal to

reposition the camera. The gimbal allows the camera to be repositioned

anywhere from -60 degrees to +60 degrees azimuth and 0 to 90 degrees

elevation. This combination allows the camera to see from 0.3m in front of the

robot to beyond the visible range of the camera (>2.25m). With the

combination of these 2 degrees of freedom, the camera can see a full 120

degrees of the horizon near and far. This area is divided into 10 different

sectors that the camera searches. Each sector boundary has 6 degrees of overlap

to ensure full coverage. These Sectors are shown below in figure 12, the

numbers in each area represent the search order.

3

8

2

1

10

4

7

5

6

9

 Figure 12: Search Sector Layout

Since these 10 sectors cover only 120 degrees of the horizon, it is necessary to

combine these search areas into a larger pattern that the chassis makes possible

by repositioning the robot. Each time the camera searches all 10 sectors without

a lock, a “reposition” command is sent to the chassis. The first two times the

command is sent, the robot will rotate 120 degrees and wait for us to do another

Ball/Hole Locator Module Page 24 5/6/2002

search. This allows the camera to cover the full 360 degrees of the horizon.

The downside of this is that there is a blind spot directly under the robot and

immediately around it. To cover this area, the chassis goes in reverse 1m after

receiving the third “reposition” command thus allowing the camera to directly

see the remaining area. Figure 13 shows how the entire search area is broken

down into smaller areas that can be searched using the pattern shown in Figure

12.

Fieldof View

After First

Repositioning
Fi

el
d

of
 V

ie
w

Af
te

r
Se

co
nd

Re
po

sit
io

ni
ng

Intial Field of
View

Blind Spot
Under
Robot

R = 2.75m

R =0.5m
Blind Spot
After Third

Repositioning

Field of View
After Third

Repositioning

=0.5m

Figure 13: Repositioning Diagram

Ball/Hole Locator Module Page 25 5/6/2002

This method allows for a complete search within a 2.75 meter radius.

Navigation guarantees less than a 3 meter error in position. This leaves a small

chance that the ball is beyond the range of the camera. To deal with this, plans

were made to have the chassis navigate the circumference of the search

perimeter stopping every 2 meters to perform a scan. This was never

implemented by the chassis but it is already built into the code for the ball and

hole location subsystem.

Finding the Ball and Hole

Once the camera is looking in a certain direction it must look for the ball or

hole. This is done by sending a command to the camera called “get mean.” The

camera returns a string of data consisting of the mean values of the red, green,

and blue channels, in addition to the variance of each channel. This data is used

to calculate the minimum color values to be tracked. The minimum color value

is found using the equation: {MinColor = MeanColor + 2*Variance}. This is

done only for the green and blue channels. The minimum value for red is set to

0. This is done to ignore the red part of the spectrum. By ignoring red, the

camera is not distracted by the horizon or the sky since red varies greatly

depending on whether the camera is looking at all grass or if the horizon/sky is

in the frame.

The maximum values of red, green, and blue to be tracked are always 240

(saturation) since white objects are the only thing that can reflect enough light to

saturate the red, green, and blue channels, and as a result, it makes them easy for

the camera to track.

Small white objects as well as large distant white objects that have similar

angular size as a golf ball will confuse the camera since they resemble a ball

and/or hole. To prevent the camera from tracking objects that are too big to be

either a ball or hole, the size is checked to make sure that the object is smaller

than 50 pixels.

Ball/Hole Locator Module Page 26 5/6/2002

Once the minimum values of green and blue are calculated they are put into a

command string that is sent to the camera. The string is in the form:

“TC Redmin Redmax Greenmin Greenmax Bluemin Bluemax \r”

The camera returns a string in the form:

“255 M Mx My X1 Y1 X2 Y2 Conf Size:”

“255 M” is a packet identifier. “Conf” refers to the confidence that the camera

has about what it is tracking, any value above 50 is considered a definite lock.

“Size” refers to the size of the target in terms of pixels. Any value greater than

50 cannot be a ball or hole. “Mx My” will be discussed in section 3.4.4

Tracking. ” X1 Y1 X2 Y2” are not used. For more information on the

commands sent to the camera as well as the format of the data packets generated

by the camera refer to Table 3 on the following page.

Ball/Hole Locator Module Page 27 5/6/2002

Table 3: Summary of Commands for Color Tracking
Command Command String Format Return Packet Format

Get Mean “GM\r”

“255 S Rm Gm Bm Rv Gv Bv :”

S is the type of packet returned

(m) represents the mean value for a single

.channel

(v) is the variance returned for a single channel.

Track Color “TC Rmin Rmax Gmin Gmax Bmin Bmax \r”

“255 M Mx My X1 Y1 X2 Y2 Conf Size :”

M is the type of packet returned.

Mx This is the x-coordinate of the center of the

object tracked.
My This is the y-coordinate of the center of the

object tracked.
X1 ,Y1 is the lower left coordinate of the target.
X2 ,Y2 is the upper right coordinate of the

target.
Conf This is the confidence of the tracked

object.

Size This is the size of the tracked object

Ball/Hole Locator Module Page 28 5/6/2002

Below is a block diagram that shows the steps necessary to find the ball or

hole within a sector. (Figure 14)

Begin Sector
Search

Get Mean
Color Data

Calculate Color
 Min Red (Rx) = 0
 Min Green (Gx) = Gm + 2*Gv
 Min Blue (Bx)= Bm +2*Bv

Color Data
Mean = (Gm, Bm)

Variance = (Gv, Bv)

Generate Command
"TC 0 240 Gx 240 Bx \r"

Send command

Move to
Next Sector

Receive Data
(Conf, Size)

Lock Criteria
Met?

Proceed to
Tracking Loop

YES

NO

Figure 14: Flow Diagram to Find a Target

2.4.4. Tracking

Tracking is initiated by sending a “track color” command to the camera. The

command is sent with a set of six arguments that define what to look for. The

arguments include the minimum and maximum values of the red, green, and

blue components of the target color. If the camera sees an object that meets the

color criteria and size criteria a visual lock is made.

When a target is visually locked, the coordinates of the target is loaded from

the camera into the 68HC12 memory. These coordinates represent the position

of the target within the field of view of the camera, in an X-Y plane. The X

Ball/Hole Locator Module Page 29 5/6/2002

values (horizontal) range from 0-80. The Y values (vertical) range from 0-143.

The coordinates of the center field of view are (40, 72). The program takes the

coordinates the target (Mx, My) and subtracts the coordinates of the center field

of view. The difference between these numbers represents the angular distance

the camera should move to center the target within the field of view. This

correction is a signed value that is scaled or multiplied by a constant and added

to the duty cycle of the respective servo.

This process allows for very fast tracking since the camera position is fully

corrected on every program cycle. Figure 15 shows a block diagram of how this

function works.

Figure 15: Flow Diagram for Camera Tracking

Stop Robot
Proceed to scan

Target
Coordinates

(Mx,My)

Send Track Color
Command

Lock
Confirmed?

Error Calculation

(Mx,My)
-(40,72)
(dx, dy)

Correction Calculation
 (kx,ky)
x (dx, dy)

(Corx,Cory)

Correct Duty Cycle
(moves servo)

PWDTY0 = PWDTY0 + Corx
PWDTY2 = PWDTY2 + Cory

Receive
Data From Camera

NO

YES

Ball/Hole Locator Module Page 30 5/6/2002

2.4.5. Chassis Control

While the Ball/Hole Subsystem is in a tracking loop, the chassis must be given

instructions that tell the robot to stop, go, turn, or go strait every 260ms. This

accomplished by sending a command every fourth RTI Interrupt. For this to be

done, the data must be generated and packaged into one byte packets that

contain a 2 bit identifier as well as data for the chassis to use. The first half of

this section describes how the data is extracted and packaged into one byte

packets. The latter half describes what kind of packet is sent each time data is

sent.

Generating Control Data

In order to tell the chassis where to go so that the appropriate action with the

ball can be taken, the module needed to send out drive and steer data to the

chassis. The data that is to be sent consists of an 8-bit word. The 8-bit word is

broken down into three distinct sections:

• CH4-CH0 bits that determine the magnitude of the drive or steer.

• CH5 high tells the chassis to either go backward, or turn left, depending

on what the CH6 and CH7.

• CH6 and CH7 tell the chassis to drive, steer, or stop. If the 2 most

significant bits are “0F”, the chassis will stop. If the command of a “01”

is sent, the chassis will be told to steer. Finally, if a “10” is sent, then the

chassis will be ordered to drive. CH6 and CH7 also tell the robot to start

looking for the ball or hole, to reposition, or to tell the robot that the

module is finished. See Figure 16 and Table 4 for more details.

Ball/Hole Locator Module Page 31 5/6/2002

Figure 16: Data Packet Map

CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0

CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0 Description

0 0 0 0 1 1 1 1 Stop

0 1 0 X X X X X Steer to the Right

0 1 1 X X X X X Steer to the Left

1 0 0 X X X X X Drive Forward

1 0 1 X X X X X Drive Backward

0 0 1 0 0 0 0 0 Acknowledge to find the hole

0 0 1 0 0 0 0 1 Acknowledge to find the ball

1 1 1 1 0 0 0 0 Reposition the Chassis

1 1 1 1 1 1 1 1 Task Complete

Table 4: Data Packet Description

Transmitting the Data

When the target is initially acquired, there is a chance that the target is

relatively close to the robot, but at a wide angle. This situation may result in the

robot driving past the ball because the steering was too slow with respect to the

driving speed. To prevent this scenario, a test is done to see if the ball is more

than 10 degrees from the direction the chassis is pointing. If the chassis is too

far out of line, only steering packets are sent until the chassis is pointing within

Ball/Hole Locator Module Page 32 5/6/2002

the 10 degree range of the target. After the robot is pointing in the right

direction the data stream consists of alternating packets (steering or driving).

This is done until the target is in position for retrieval at which time a code

(0xFF) is sent to signal that the Ball/Hole Locator is finished. If the target lock

is lost during the tracking routine, the stop code (0xF0) is sent immediately to

stop the chassis so that the target can be relocated.

3. Resource Allocation
This section will describe in detail about the power usage of the Ball/Hole

subsystem with details of how much power each of the major components consume.

The cost summary will cover how the money was spent, as well as any donations

that were given. Finally, the section will end with the distribution of tasks among

the team.

3.1. Power Distribution

Power requirements were determined previously by the amount of power each

primary component will consume. All calculations were based on a 5-volt

regulated DC power supply. Primary components and their power consumption

include:

Components Power Consumed
CMUcam 100mW

HC12 300mW

2 Futaba S3401 Servo Motors 200mW

HC12 Altera Expansion 350mW

Miscellaneous Discrete Components 100mW

Total Power Consumed 1.05 W

Table 5: Power Budget

Ball/Hole Locator Module Page 33 5/6/2002

Total power consumption is about 1 watt, which was adequately supplied by a

regulated 5-volt power supply. These components continuously consume power, so

a steady supply of power was necessary to keep the module up and running. More

components could have been added; such as a voltage regulator to reduce the

amount of power consumed, but the power drop wouldn’t have been that

significant. Also, if the expansion didn’t consume as much power as it should, then

the power requirement could have been further reduced and we wouldn’t have to

consort to continuously swapping out batteries for every half- hour of usage.

3.2. Cost Summary

Out of the $2,000 proposed for each robot, $600 was allocated for the team to

utilize. shows the types of items that were purchased, the unit cost, how many

units of the product were purchased, and the total cost of the product. Comments

were also added in the table to indicate the source of the purchases. If a

replacement parts are needed, info about the place where the product was

purchased was included

As shown in the final budget, the total cost for all the components come to a

total of $448.63. This includes all of the replacement parts that needed to be

purchased as well as the shipping and handling costs. Miscellaneous costs that

were useful in the design process are also included in this budget. For example, in

the final budget, the 6’ x 6’ Astroturf was useful in testing basic tracking

functionality of the camera.

Costs would have been further reduced if:

• Less failures in servo motors

• Excess material

• Ordering spare parts

Ball/Hole Locator Module Page 34 5/6/2002

However, components did fail and some purchases needed to be made to

compensate those failures. For example, the first pair of the Futaba servos started

to act very unreliably about three weeks before the final design review took place.

Hence, two new servos had to be ordered, which tacked on another $100 to the

budget. Due to multiple mistakes in the board design process, major setbacks

were encountered building the power distribution and optical isolator boards. The

result of these mistakes caused the current supply of the blank PCB to be used

completely, and another blank PCB board had to be purchased for $8.50. All in

all, an extra $108.50 was spent on replacement products. Without replacements,

the total cost would be brought down to $340.13.

3.3. Division of Manpower
This section talks about each team member’s contributions towards the project.

Each of the team members played a contribution in hardware, software, and

business aspect of the project.

4. Testing

4.1. Conditions

In order to judge the capabilities of the module, several tests were performed

under different conditions. Each condition represents a possible scenario that the

Ball/Hole Locator Module may encounter during operation. These conditions

include:

 A sunny day, with no clouds.

 A partly cloudy to cloudy day.

 Test times from midday to late afternoon where shadows are present.

 Looking at the ball from different directions with respect to the sun.

 At night using a flashlight for a light.

 Indoors: artificial lighting and a non-uniform background or Astroturf.

Ball/Hole Locator Module Page 35 5/6/2002

 Outdoors on varying types of grass.

 The module was mounted of 11” above the ground to simulate the

chassis ride height.

These test conditions were used to characterize the performance of the module

in a variety of different test conditions in addition to improving the overall

performance of the module.

4.2. Tests performed

For each possible condition, it needed to be determined how far away could

the ball be detected and tracked. Factors such as time of day and objects in the

background that may cause the picture to be non ideal were noted. Also, both

yellow and white golf balls were used to simulate different types of golf balls.

The code was tested for stability by providing multiple objects in one picture

and the object being tracked would often be removed to test module “smarts”.

Any thing that might cause code to get lock was considered.

The feedback for these tests came in the form of data. How far was the

module able to track? Where did the code crash? Did the camera get distracted?

This data was complied to give results on just when and where is the best place

to use the module, and when is the module totally limited by its surroundings.

4.3. Results

After conducting the research and compiling data, the results have been

decided. The ideal conditions for this module are a sunny afternoon with very

few shadows and in short cut, uniform grass or Astroturf. Under these

conditions, the camera could track accurately (continuous camera correction) of

seven and a half feet. The program operated correctly when the object was taken

away by restarting the scan. In the case of multiple objects, the camera would

pick the bigger of the two objects.

Ball/Hole Locator Module Page 36 5/6/2002

For the more commonly occurring non-ideal conditions, the ability of the

module varied greatly. During the late afternoon when shadows were long and

also on cloudy days, the camera would sometimes end up tracking the grass

instead of the ball. The reason for this was because the shadows would lower

the average color value of the picture seen by the camera and thus grass now

covered by the shadow would seem “bright”. Based on the searching algorithm,

the camera would see “bright” as being the object to track. Also, range the range

went down to be around five to six feet.

Tracking the ball indoors or at night was the hardest. Inside, the fluorescent

lighting decreased the tracking range considerable. Also, there are many objects

small enough inside that the camera would consider as a ball. Often, the

program would get confused and track random objects in the room. The best

solution was to place the camera on a uniform dark background or on the

Astroturf. At night the flash light provided the light and the camera would not

see the ball and instead track the light source. The program had no trouble

tracking the flashlight since everything else was black.

The software did a good job of not tracking objects to0 big. Since the

algorithm relies on size to track, large objects did not confuse the camera. Also,

switching the white ball for a yellow one decreased the range farther since a

yellow ball does not reflect the light as much. When the grass was not low cut

or had holes the camera had a harder time finding the ball (often it would miss).

Having the camera look at the horizon proved to not be a problem since the red

channel was ignored in the search algorithm.

Based on the results of this data, one can conclude that the ball/hole locator

module works best under outdoor conditions with few clouds. A background

that is as uniform as possible also improves the range. All large objects will be

ignored under these conditions as well. Under these outdoor conditions the

module was determined to have a tracking range of five to seven feet. Thus, it is

not highly recommend that the module be used in conditions where there are a

lot of shadows or the background tends to be random (such as a lab) since can

Ball/Hole Locator Module Page 37 5/6/2002

confuse the camera and the software. The color of ball can be taken into account

by adjusting the confidence levels correctly in the program.

5. Conclusion

The final status of the Ball and Hole Locator is “Fully Functional”. The capabilities

include:

 Successfully locate a ball or hole at a distance of 2.25m

 Drive data is generated and sent to the chassis via Navigation

 The system is able to ignore visual distractions such as the sky or horizon.

Objects similar to a ball or hole cannot be ignored.

 The system can dynamically track the ball or hole while the chassis is

moving

 The system can run independently or integrated with the robot.

 Conditions that affect the performance of the system include:

 Indoor lighting conditions (sunlight is beneficial)

 Colored balls cannot be easily tracked

 White objects within the field of view prevent tracking of target

 Long shadows that occur in the early morning and late afternoon may

prevent tracking or limit range.

If this project were to be attempted again, it would be advisable allocate funds

sooner as well as setting another deadline for individual functionality a few weeks

prior to the final functionality deadline where full integration will be required.

Ball/Hole Locator Module Page 38 5/6/2002

Appendix A: Serial Communication Schematics and Altera Code

nTXRDY2

DUART
PC16552C

D
2

D
3

D
1

D
0D
4

D5

D6

D7

A0

Xin

Vss

Xout

A2

A1

Intr2

nC
S

nM
F2 nW M
R

Vs
s

nR
TS

2

nR
D

Si
n2

So
ut

2

nD
TR

T2

nC
TS

2

nDSR2

nDCD2

nRI2

Vdd

Intr1

nMF1

nRST1

NDTR1

Sout1

Sin1nT
XR

D
Y1

Vd
d

nR
I1

nD
C

D
1

nD
SC

R
1

nC
TS

1

CHSL

MC68HC12Altera Expansion

01234567

C
lo

ck
So

ur
ce

nWnRM
R

C
SA0A1A2C
H

SL

 .1 uF

Vdd VssData[7..0]

M
ax

 2
33

 .1 uF

5 v

1

2

3

4

5

6

7

8

9

10 11

12

13

14

15

16

17

18

20

19

 .1
 u

F

18
.4

32
 M

H
z

5
v

RS-232 Output

RS-232 Output

RS-232 Output
RS-232 Output

Figure 3: DUART Schematic. Note: Modem Pins should be wired high.

Ball/Hole Locator Module Page 39 5/6/2002

Figure 4: Component Layout for the DUART chip.

Ball/Hole Locator Module Page 40 5/6/2002

Figure 5: Final Altera gdf file including address decoder.

Ball/Hole Locator Module Page 41 5/6/2002

Figure 6: The address decoder .tdf file written in altera.

Ball/Hole Locator Module Page 42 5/6/2002

Figure 7: Pin out for the programmed Altera expansion. EB is used for external pins.

Ball/Hole Locator Module Page 43 5/6/2002

Appendix B: Mechanical Drawings

Gimbal Side View

Ball/Hole Locator Module Page 44 5/6/2002

Gimbal Front View

Ball/Hole Locator Module Page 45 5/6/2002

Appendix C: HC12 Source Code

/************************ Main Program Last Update 4-26-02 @ 12:00pm ****************/
#include "hc12.h"
#include <stdio.h>
#include "DBug12.h"
#define YES 1
#define NO 0
#define TRUE 1
#define FALSE 0
#define GARBAGE 0x00

//CODES !!
//ff = done
//f0 = reposition
//0f = stop
//0x21 = find the ball/request acknowledge
/***************************SETUP AND DEFINE VARIABLES*********************/

 /************* Prototyping Functions **********/
 void wait(void); /*indicator 5 */
 void resetcam(void); /*indicator 1 */
 void delay(int ms); /*ms is # of ms delay*/
 void verify(void);
 void scan(void); /*indicator 3 */
 void calcam(void);
 void getcolor(void);
 void trackball(void);
 void correctgimbal(void); /*indicator 2 */
 void acquireball(void);
 void acquirehole(void);
 void command(unsigned char send[]); /*indicator 6 */
 void receive(int n); /*indicator 7 */
 void calcDRIVEdata(void);
 void calcSTEERdata(void);
 void send_data(unsigned char DATA); /*indicator 4 */
 void receive_data(void); /*indicator 5 */

 /************ Prototype Interrupts**************/

 /************** Define Variables ***************/
 typedef enum {false,true} bool;
 volatile char RECEIVE = 0x00;

 signed int centerAZ = 40; /*centroid of field of view (X) */
 signed int centerEL = 71; /*centroid of field of view (Y) */

 unsigned int defaultAZ = 0x9d0; /*home position of the gimbal */
 unsigned int defaultEL = 0x666; /*home position of the gimbal */
 unsigned int final_AZB = 0x96e; /*final position of gimbal */
 unsigned int final_ELB = 0x43e; /*final position of gimbal */
 unsigned int final_AZH = 0x96e; /*final position of gimbal */
 unsigned int final_ELH = 0x43e; /*final position of gimbal */
 volatile signed int AZcor = 0; /*error of azimuth(X)= 1-->80 */
 volatile signed int ELcor = 0; /*error of elevation(Y)= 1-->143 */

Ball/Hole Locator Module Page 46 5/6/2002

 volatile signed int tempDTY0; /*used for calculating DTY cor */
 volatile signed int tempDTY2; /*used for calculating DTY cor */

 volatile unsigned int count; /*placeholder for camdat array */
 signed int camdat[15]; /*data going into and out of cam */

 volatile char LOCK; /*LOCK=YES, conf>=50 */
 volatile char no_lock; /*number of times LOCK = NO */
 volatile char LOST; /*LOST=YES, Redo the scan */
 volatile char TALK; /*TALK=YES, it is OK talk to NAV */
 volatile char talk_delay =0; //used for testing and slowing down the data stream

 volatile char gotball = NO; /*keep looking for ball*/
 volatile char gothole = NO; /*keep looking for ball*/
 unsigned char track_color[25]; /*used in track color command */
 volatile char RED; /*notes the RED value for tracking*/
 volatile char GREEN; /*notes the GRN value for tracking*/
 volatile char BLUE; /*notes the BLU value for tracking*/

 unsigned char DATA = 0; /*represents data I/O from NAV */

 volatile sending = FALSE;
 volatile finished = FALSE;
 char crap_received = 0;

 unsigned int DRIVEcor; /*notes size of drive correction*/
 unsigned int STEERcor; /*notes size of steer correction*/
 unsigned char FR; /*notes a fwd--rev correction*/
 unsigned char LR; /*notes a left or right correction*/
 unsigned char STEER = NO; /*decides to do a steer correction*/
 unsigned int z;
 /**/

void main(void)
{

 /********************** PAD4 = Azimuth input PAD5 = Elevation input*******/
 ATDCTL2 = 0x80; /* 1000 0000 */
 ATDCTL4 = 0x61; /* 011 00001 */
 ATDCTL5 = 0x34; /* x011 01xx */
 /**/

 /*********************************** Use RTI ******************************/
 RTICTL = 0x87; //turn on RTI with 65ms
 RTIFLG = 0x80; //clear RTI flag
 INTCR = 0x00;
 disable();
 /**/

 /*************************** Set up 2 PWM Channels*************************/
 PWCTL = PWCTL & ~0x80; /*set to left-aligned */
 PWPOL = 0xF0; /*Select clock mode 1 CH: 0,2 */
 PWCLK = 0xC0; /* N(1) and N(2) = 0*/
 PWSCAL0 = 1; /* M = 1 */
 PWSCAL1 = 1;
 PWPER0 = 40000; /* Period 1 = PWPER1 + 1 */

Ball/Hole Locator Module Page 47 5/6/2002

 PWPER2 = 40000; /* Period 0 = PWPER0 + 1 */
 PWDTY0 = defaultAZ;
 PWDTY2 = defaultEL;
 PWEN = 0x0F; /*enables PWM CH 1 and CH 2*/

 /*PWDTY0 == Azimuth*/
 /*PWDTY2 == Elevation*/

 /**/

 /**************Setup for Input capture on TIC channel 5 *******************/
 TSCR = 0x80; /*turn on timer*/
 TMSK2 = 0x03; //65 ms
 TIOS = TIOS | 0x00; //gives us channel two as input capture
 TCTL4 = 0x10; //SET UP T2 as rising
 TCTL3 = 0x04; /*capture rising edge*/
 TMSK1 = 0x04; // ENABLE INTERRUPTS CH2
 TFLG1 = 0x24; /*Clear Flag on Pin 5*/
 /**/

 /************** SPI Communication to NAV ***********************************/
 DDRS = DDRS | 0x10; // ss, clk, MOSI outputs, MISO is input
 SP0CR1 = 0x4c; // slave, MSB first, etc.
 SP0CR2 = 0x00; // no baud rate register since master provides the clock

 /**/

 /************************** MISC SETUP ************************************/
 DDRT = (DDRT | 0xC0); /*make PortT[7] an output for camreset*/
 //THIS ALSO SETS UP PIN SIX AS OUPUT to MASTER!!!
 DDREA = 0xff;
 PORTEA = 0x00;
 /**/

 /* PORTT MAP=> T7:RESET CAM, T6:TO MSTR, T2&T3:INPUT CAPTURE */

 /************************ SET UP SCI ***************************************/
 LINE_CTR_ADDR = 0x80; /* 1 0 0 0 0 0 1 1 */

 while(FIFO_ADDR != 0x00)
 {
 FIFO_ADDR = 0x00; //Turns off the Concurrent write
 }

 LINE_CTR_ADDR = 0x80;

 while(RT_ADDR != 0x1e)
 {
 LINE_CTR_ADDR = 0x80;
 RT_ADDR = 0x1e; /* Sets The LSB of the divisor = 30(DLAB = 1)*/
 }

 IRQ_ADDR = 0x00; /* Sets the MSB of the divisor = 0 (DLAB = 1)*/

Ball/Hole Locator Module Page 48 5/6/2002

 /*Breaks the 18.432MHz down to a baud rate of 38400 bps */

 DBug12FNP->printf("SCI Status: %x %x %x\n\r",RT_ADDR,IRQ_ADDR,
FIFO_ADDR);
 LINE_CTR_ADDR = 0x03;
 FIFO_ADDR = 0x01;

 DBug12FNP->printf("FIFO: %s\r\n", ((FIFO_ADDR & 0xc0) == 0xc0) ? "on" : "off");

 DBug12FNP->printf("SCI: %s\r\n", ((LINE_CTR_ADDR & 0x03) == 0x03) ? "ready" :
"failed!");

/***/

/************************************* MAIN PROGRAM *******************************/
 DBug12FNP->printf("Camera Tracker v.8.0 Waiting for request:>\n\r");

 //DATA = 0x21;
 //wait(); //Simulates Navigation in stand alone
while(1) /*run the main programs forever*/
{
 DATA = 0x00;
 receive_data();
 /***** WAITS FOR REQUEST TO FIND BALL OR HOLE *****/

/********************* FIND THE BALL PROGRAM **********************/

 if(DATA == 0x21) /* run "find the ball" program */
 {
 send_data(0x21); /*acknowledges request to find ball*/
 DBug12FNP->printf("Ball Finder Started!! \n\r");
 resetcam();
 scan();

 while(gotball == NO)
 {
 TALK = NO;
 enable();
 /*** This code sends out correction data to chassis ***/
 /*** Large steering errors are fixed before driving ***/
 /*** Then, steering and drive corrections alternate ***/
 if (talk_delay == 4)
 {
 TALK = YES;
 talk_delay = 0;
 }
 if(TALK == YES)
 {
 if(PWDTY0 < 0x08C4 || PWDTY0 > 0x0A29)
 {
 STEERcor = final_AZB - PWDTY2;
 calcSTEERdata();
 send_data(DATA);
 DBug12FNP->printf("Ball in left field \n\r");
 TALK = NO;
 }

Ball/Hole Locator Module Page 49 5/6/2002

 }
 if(TALK == YES)
 {
 if(STEER == YES)
 {
 STEERcor = final_AZB - PWDTY2;
 calcSTEERdata();
 send_data(DATA);
 STEER = NO;
 DBug12FNP->printf("Steering.. \n\r");
 TALK = NO;
 }
 }
 if(TALK == YES)
 {
 if(STEER == NO)
 {
 DRIVEcor = ((PWDTY0 - final_ELB));
 calcDRIVEdata();
 send_data(DATA);
 STEER = YES;
 DBug12FNP->printf("Driving.. \n\r");
 TALK = NO;
 }
 }
 disable();
 delay(1);
 trackball();
 verify();

 if (LOCK == 1)
 {
 LOST = 0;
 no_lock = 0;
 correctgimbal();
 acquireball();
 }
 else
 {
 no_lock++;
 }
 if (VLIM > 0x08) /*Makes sure you're looking down*/
 {
 scan();
 }
 if (HLIM > 0x0E || HLIM < 0x04) /*Makes sure you're not seeing chassis*/
 {
 scan();
 }

 if (no_lock > 5)
 {
 send_data(0x0f); /*Tells the robot to STOP!*/
 DBug12FNP->printf("STOP We lost the Ball \n\r");
 getcolor();
 LOST++;

Ball/Hole Locator Module Page 50 5/6/2002

 }
 if (LOST > 15)
 {
 scan();
 }
 }/*end of "gotball?" while */
 PORTEA = 0xA5;
 PORTEA = 0x00;

 }/*end of "find the ball" Program */
 /************************ END FIND THE BALL PROGRAM ***********************/

 /************************** FIND THE HOLE PROGRAM *************************/
 if (DATA = 0x20) /*run "find the hole" program*/
 {

 send_data(0x20); /*acknowledges request to find ball*/
 DBug12FNP->printf("HOLE Finder Started!! \n\r");
 resetcam();
 scan();

 while(gothole == NO)
 {
 TALK = NO;
 enable();
 /*** This code sends out correction data to chassis ***/
 /*** Large steering errors are fixed before driving ***/
 /*** Then, steering and drive corrections alternate ***/
 if (talk_delay == 4)
 {
 TALK = YES;
 talk_delay = 0;
 }
 if(TALK == YES)
 {
 if(PWDTY0 < 0x08C4 || PWDTY0 > 0x0A29)
 {
 STEERcor = final_AZH - PWDTY2;
 calcSTEERdata();
 send_data(DATA);
 DBug12FNP->printf("Hole in left field \n\r");
 TALK = NO;
 }
 }
 if(TALK == YES)
 {
 if(STEER == YES)
 {
 STEERcor = final_AZH - PWDTY2;
 calcSTEERdata();
 send_data(DATA);
 STEER = NO;
 DBug12FNP->printf("Steering.. \n\r");
 TALK = NO;
 }
 }

Ball/Hole Locator Module Page 51 5/6/2002

 if(TALK == YES)
 {
 if(STEER == NO)
 {
 DRIVEcor = ((PWDTY0 - final_ELH));
 calcDRIVEdata();
 send_data(DATA);
 STEER = YES;
 DBug12FNP->printf("Driving.. \n\r");
 TALK = NO;
 }
 }
 disable();
 delay(1);
 trackball();
 verify();

 if (LOCK == 1)
 {
 LOST = 0;
 no_lock = 0;
 correctgimbal();
 acquirehole();
 }
 else
 {
 no_lock++;
 }
 if (VLIM > 0x08) /*Makes sure you're looking down*/
 {
 scan();
 }
 if (HLIM > 0x0E || HLIM < 0x04) /*Makes sure you're not seeing chassis*/
 {
 scan();
 }

 if (no_lock > 5)
 {
 send_data(0x0f); /*Tells the robot to STOP!*/
 DBug12FNP->printf("STOP We lost the HOLE \n\r");
 getcolor();
 LOST++;
 }
 if (LOST > 15)
 {
 scan();
 }
 }/*end of "gotball?" while */
 PORTEA = 0xA5;

 PORTEA = 0x00;

 }/* end of "find the hole" Program*/
 /************************ END FIND THE HOLE PROGRAM ***********************/

Ball/Hole Locator Module Page 52 5/6/2002

 DATA = 0x00;
 }/*end of while(1) loop */

}/*end of main*/
/*********************************** END MAIN PROGRAM ***************************/

/************************************ DEFINE Functions*****************************/

 /****************************** WAIT Function *****************************/
 void wait()
 {
 PORTEA = 0x20;
 DBug12FNP->printf("waiting for trigger..\r\n");
 TFLG1 = 0x20; // clears flag for PT5
 while((TFLG1 & 0x20) == 0); /*wait */
 PORTEA = 0x00;
 }
 /*****************************END WAIT Function ***************************/

 /*****************************RESETCAM Function****************************/
 void resetcam()
 {
 PORTEA = 0x01;
 PORTT = (PORTT | 0x80); //switch the relay TURN OFF CAM
 delay(1000); //wait
 TALK = NO;
 PORTT = (PORTT &~0x80); //turn ON CAM
 delay(100); // add some time
 command("RS\r"); //reset camera
 command("RM 3\r"); //turn on raw mode
 command("RM 3\r");
 command("PM 1\r"); //turn on poll mode
 command("PM 1\r");
 PORTEA = 0x00;
 }
 /**************************** END RESETCAM Function ***********************/

 /******************************* DELAY Function ***************************/
 void delay(int ms)
 {
 int i;
 while (ms>0) /* Out loop delays num ms */

 {
 i = 1333; /* Inner loop takes 6 cycles */
 while (i > 0) /* 1333 times 6 = 1 ms */
 {
 i = i-1;
 }

Ball/Hole Locator Module Page 53 5/6/2002

 ms = ms - 1;
 }
 }/*end of DELAY Function*/
 /**/

 /**************************** SCAN Function *******************************/
 void scan()
 {
 char sector;
 sector = 1;
 PORTEA = 0x04;
 LOST = 0;
 LOCK = 0;
 while(LOCK == 0)
 {

 if(sector == 1)
 {

 PWDTY2=0x63e; /*cushion servo*/
 delay(250);
 PWDTY0=0x0CD1; /*00000*/
 PWDTY2=0x06fb; /*X0000*/
 }
 if(sector == 2)
 {
 PWDTY0=0x0B28; /*00000*/
 PWDTY2=0x06fb; /*0X000*/
 }
 if(sector == 3)
 {
 PWDTY0=0x097F; /*00000*/
 PWDTY2=0x06fb; /*00X00*/
 }
 if(sector == 4)
 {
 PWDTY0=0x07C5; /*00000*/
 PWDTY2=0x06fb; /*000X0*/
 }
 if(sector == 5)
 {
 PWDTY0=0x05E9; /*00000*/
 PWDTY2=0x06fb; /*0000X*/
 }
 if(sector == 6)
 {
 PWDTY0=0x05E9; /*0000X*/
 PWDTY2=0x0871; /*00000*/
 }
 if(sector == 7)
 {
 PWDTY0=0x07C5; /*000X0*/
 PWDTY2=0x0871; /*00000*/
 }

Ball/Hole Locator Module Page 54 5/6/2002

 if(sector == 8)
 {
 PWDTY0=0x097F; /*00X00*/
 PWDTY2=0x0871; /*00000*/
 }
 if(sector == 9)
 {
 PWDTY0=0x0B28; /*0X000*/
 PWDTY2=0x0871; /*00000*/
 }
 if(sector == 10)
 {
 PWDTY0=0x0CD1; /*X0000*/
 PWDTY2=0x0871; /*00000*/
 }

 if (sector == 10) /*reset sector*/
 {
 //increment counter to slow down
 sector = 0;
 send_data(0xf0); //tell robot to reposition
 DBug12FNP->printf("Standby while Robot repositions\n\r");
 delay (5000);
 }
 delay(500);
 calcam();
 getcolor();
 trackball();
 if(camdat[9] >= 50 && camdat[8] <= 50)
 {LOCK = 1;}
 sector = sector + 1;
 DBug12FNP->printf("Sector = %d Conf= %d Size= %d\n\r", sector, camdat[9],
camdat[8]);

 }/*end of "LOCK = NO" loop*/
 PORTEA = 0x00;
 }/*end of scan*/
 /***************************** END SCAN Function **************************/

 /*************************** CALCAM Function ************************/
 void calcam()
 {
 command("CR 18 44\r");
 delay(2000);
 //command("CR 18 40\r");
 }
 /************************ END CALIBRATECAM Function ***********************/

 /**************************** GETCOLOR Function ***************************/
 void getcolor()
 {

 command("GM\r");

Ball/Hole Locator Module Page 55 5/6/2002

 receive(10);
 //RED = camdat[3] + 2*camdat[6];
 GREEN = camdat[4] + 2*camdat[7];
 BLUE = camdat[5] + 2*camdat[8];

 }
 /**/

 /**************************** TRACKBALL Function **************************/
 void trackball()
 {

 sprintf(track_color," TC 0 240 %d 240 %d 240\r",GREEN,BLUE);
 command(track_color);
 receive(10);
 //DBug12FNP->printf("Mx=%c My=%c Pix=%c Conf=%c
\n\r",camdat[2],camdat[3],camdat[8],camdat[9]);
 //DBug12FNP->printf("Mx=%d My=%d Pix=%d Conf=%d
\n\r",camdat[3],camdat[4],camdat[8],camdat[9]);
 //DBug12FNP->printf("1=%c 2=%c 3=%d 4=%d 5=%d 6=%d 7=%d 8=%d 9=%d 10=%d\n\r",

 //camdat[1],camdat[2],camdat[3],camdat[4],camdat[5],camdat[6],camdat[7],camdat[8],camdat[9],
camdat[10]);
 //DBug12FNP->printf("ELEVATION =%x \r\n", PWDTY2);

 }
 /************************** END TRACKBALL Function ************************/

 /************************** ACQUIRE BALL Function **************************/
 void acquireball()
 {

 if(((PWDTY0 | 0xfff0)==(0xfff0 |final_AZB)) && ((PWDTY2 | 0xfff0)==(0xfff0 | final_ELB)))
 {
 gotball = YES;
 PORTEA = 0xFF;
 DBug12FNP->printf("We have a ball !!! \n\r");
 send_data(0xff);
 DATA = 0x00;
 PORTEA = 0x00;
 }
 else
 {gotball = NO;}

 }
 /************************* END ACQUIRE BALL Function ***********************/

 /************************** ACQUIRE HOLE Function **************************/
 void acquirehole()
 {

 if(((PWDTY0 | 0xfff0)==(0xfff0 |final_AZH)) && ((PWDTY2 | 0xfff0)==(0xfff0 | final_ELH)))

Ball/Hole Locator Module Page 56 5/6/2002

 {
 gothole = YES;
 PORTEA = 0xFF;
 DBug12FNP->printf("We have a HOLE!!! \n\r");
 send_data(0xff);

 PORTEA = 0x00;

 }
 else
 {gothole = NO;}

 }
 /************************* END ACQUIRE HOLE Function ***********************/

 /************************************ CORRECT GIMBAL Function *************/
 void correctgimbal()
 {
 PORTEA = 0x02;
 /**********Calculate El and Az Correction ***********/
 AZcor = camdat[3] - centerAZ;
 ELcor = camdat[4] - centerEL;
 //DBug12FNP->printf("AZcor = %d ELcor = %d \n\r",AZcor,ELcor);
 /******** Scale and Write Duty cycle Correction ****/
 tempDTY0 = PWDTY0 + AZcor*7;
 tempDTY2 = PWDTY2 - ELcor*3;
 PWDTY0 = (unsigned int)(tempDTY0);
 PWDTY2 = (unsigned int)(tempDTY2);

 PORTEA = 0x00;
 }/*end of "correct gimbal" routine */

 /************************** END CORRECT GIMBAL Function ******************/

 /****************************Begin DRIVE Function*************************/
 void calcDRIVEdata()
 {
 FR=0;
 if ((DRIVEcor & 0x8000))
 {
 FR = 1; /* Go in Reverse */
 DRIVEcor = DRIVEcor - 32768;
 }
 DATA = (DRIVEcor >> 5);
 if (FR == 1)
 {
 DATA = DATA | 0x20; /*Tells chassis to reverse */
 }
 DATA = DATA | 0x80; /*Tells chassis, to go */
 }
 /***********************End DRIVE Function***********************************/

Ball/Hole Locator Module Page 57 5/6/2002

 /***********************Begin calcSTEERdata Function ************************/

 void calcSTEERdata()
 {
 LR=0;
 if ((STEERcor & 0x8000))
 {
 LR = 1; /* Turn Left */
 STEERcor = STEERcor - 32768;
 }
 DATA = (STEERcor >> 5);
 if (LR == 1)
 {
 DATA = DATA | 0x20; /*Tells chassis to turn left */
 }
 DATA = DATA | 0x40; /*Tells chassis to turn */
 }
 /***********************END of STEER Function******************************/

 /************************ RECEIVE DATA FROM NAV ***************************/

 void receive_data(void)
 {

 PORTEA = 0x20;
 DBug12FNP->printf("waiting for nav \n\r");

 RTICTL = 0x00; //turn OFF RTI with 65ms
 TMSK1 = 0x04; // ENABLE INTERRUPTS CH2
 enable();
 //while(!RECEIVE); //WAIT until TIC2 HANDSHAKE SET

 PORTT = PORTT | 0x40; // raise handshake
 SP0DR = GARBAGE; // send back garbage

 while ((SP0SR & 0x80) == 0); // wait for transfer to finish

 DATA = SP0DR; // read out the received data, and this also
clears

 PORTT = PORTT & ~0x40; // drop handshake

 RECEIVE = FALSE; // done receiving
 TMSK1 = 0x00; // DISABLE INTERRUPTS CH2
 RTICTL = 0x87; //turn on RTI with 65ms
 PORTEA = 0x00;
 disable();
 DBug12FNP->printf("DATA input from NAV = %x\n\r", DATA);
 }
 /************************ END RECEIVE FROM NAV ****************************/

 /************************ Send DATA to NAV ********************************/

 void send_data(unsigned char DATA)
 {

Ball/Hole Locator Module Page 58 5/6/2002

 PORTEA = 0x10;
 DBug12FNP->printf("Sending %u \n\r", DATA);

 SP0DR = DATA;

 PORTT = PORTT | 0x40; // raise line to tell master we want to transfer

 while ((SP0SR & 0x80) == 0); // wait for transfer
 crap_received = SP0DR; // clear spi flag
 PORTT = PORTT & ~0x40; // drop handshake line
 DBug12FNP->printf("DATA output = %x\r\n", DATA);
 PORTEA = 0x00;

 }
 /************************ END Send to NAV ****************************/

 /************************** RECEIVE Function ******************************/
 void receive(int n)
 {

 PORTEA = 0x80;
 count = 0;
 while(count != n)
 {
 while((IRQ_ADDR & 0x04) != 0x04);
 camdat[count] = RT_ADDR;
 count++;
 }
 PORTEA = 0x00;
 }
 /************************ END RECEIVE Function ****************************/

 /**************************** COMMAND Function ****************************/
 void command(unsigned char send[])
 {
 PORTEA = 0x40;
 count = 0;
 while(send[count] != '\0')
 {
 RT_ADDR = send[count];
 delay(5);
 count++;
 }

 PORTEA = 0x00;
 }
 /************************* END COMMAND Function **************************/

 /**************************** VERIFY Function **************************/
 void verify()
 {

Ball/Hole Locator Module Page 59 5/6/2002

 if(camdat[9] >= 50 && camdat[8] <= 50)
 {LOCK = YES;}
 }

/************************** END VERIFY Function ************************/

/******************************** END DEFINE Functions ***************************/

/**************************** DEFINE Interrupts ******************************/
@interrupt void rti_isr(void)
 {
 PORTEA = 0x08;
 talk_delay++;
 RTIFLG = 0x80; //clear RTI flag
 PORTEA = 0x00;
 }
@interrupt void tic2_isr(void)
 {
 RECEIVE = TRUE;
 DBug12FNP->printf("TIC 2 interrupt \n\r");
 TFLG1 = 0x04; // clear the channel 2 flag
 }
/*************************** END DEFINE Interrupts ************************/

Ball/Hole Locator Module Page 60 5/6/2002

Appendix D: Schematics

Power Distribution Board.

Indicator Pannel on the Power Distribution Board.

Optical Isolator Schematic

Ball/Hole Locator Module Page 61 5/6/2002

Appendix F: Printed Circuit Board Artwork

Power Distribution Board Layout

Optical Isolation Board Layout

Ball/Hole Locator Module Page 62 5/6/2002

Appendix F: Project Costs

Ball/Hole Locator Module Page 63 5/6/2002

Ball/Hole Locator Module Page 64 5/6/2002

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Appendices

	Project Breakdown
	Total System
	Ball and Hole Location Module

	System Overview
	System Requirements & Design Goals
	Subsystem Functions
	The Camera
	Camera Interface
	Camera Motion Control
	Interfacing with the Navigation Subsystem
	User Interface

	Subsystem Integration
	Power Distribution
	Mechanical Layout

	Software Design
	Algorithm Overview
	Camera Communications
	Searching
	Repositioning the Camera
	Finding the Ball and Hole

	Tracking
	Chassis Control
	Generating Control Data
	Transmitting the Data

	Resource Allocation
	Power Distribution
	Cost Summary
	Division of Manpower

	Testing
	Conditions
	Tests performed
	Results

	Conclusion
	Appendix A: Serial Communications Schematics and Altera Code
	Appendix B: Mechanical Drawings
	Appendix C: HC12 Source Code
	Appendix D: Schematics
	Appendix E: Printed Circuit Board Artwork
	Appendix F: Project Costs

