

Type R

Robot A, Navigation Subsystem

Jonathan Andrews
Matthew Artelt
David Catanach

Ryan Kruse

New Mexico Institute of Mining and Technology
Electrical Engineering Department

Prepared For:
Dr. William Rison

Dr. Kevin Wedeward

May 6, 2002

Type R Final Report

Page 2

Abstract

One requirement to obtain the Bachelors of Science in Electrical Engineering at New

Mexico Tech is that students complete “Introduction to Design,” EE382. This semester’s task

was to build a golfing robot. The class built two robots, A and B, with each robot divided into

four subsystems: Navigation, Ball/Hole Location, Smart Chassis, and Communications. We

were assigned to the Navigation Module of Robot A.

The following report will outline the design and equipment used to complete the

Navigation Module. The requirements of the project stipulate that the module use a GPS to

determine the robot’s location and a compass to determine the heading. This information will

then be used to calculate the angles and distance the robot must move to find the ball and hole on

a green. The bulk of the module was finished few weeks prior to the end of the term, and the

remaining time was spent assisting other modules and testing the communications protocols.

The reference section of the report (Appendix D) contains links to the data sheets and

handbooks that go with the hardware that we used. They were indispensable in setting up much

of the hardware.

Type R Final Report

Page 3

Why “Type R”?

Why “Type R?” This comes from the automotive world, specifically Import Tuning. A

sub-culture, if you would, of Import Tuning is called “Rice.” One popular aspect of Rice is

adding stickers, emblems, etc. of faster cars to “normal” cars such as a Honda Civic. Among

Ricers, as people who perform such acts are called, of the most popular “rices” is putting a Type

R sticker off a race version Acura Integra onto their cars. This is done to intimidate others.

Golf, like auto racing and sport tuning, is a sport of mental challenges, and the more

distractions and intimidations that a player can give his opponent, the worse the opponent will

do, in theory. Thus, we chose “Type R” to intimidate the opposing robot player, and improve

our chances of playing a better game.

The actual “Type R” on the back of the module was not originally intended to be painted

onto the Robot. However, one long night in the lab resulted in high stress levels and a need to

release that stress. Thus, “Type R” was born.

Type R Final Report

Page 4

Table of Contents

Abstract .. 2

“Type R” ... 3

Index of Appendices .. 5

Index of Figures and Tables ... 6

Introduction.. 7

Module Overview.. 8

Hardware Design

Casing and Mounting... 9
Garmin GPS16 ... 11

National Semiconductor UART ... 11
Precision Navigation Vector 2X Digital Compass Module 14
Analog Devices ADXL202JQC Accelerometer ... 18
Communications .. 21

Software Design

GPS .. 22
Math Functions .. 24
Compass Setup and Data... 26
Accelerometer Setup and Data ... 29
Communications Protocols .. 30
Main Program Flow

Initialization .. 33
Initial Coordinates/Start.. 33
Finding Ball ... 33
Ball Capture... 34
Hole Location/Drop-off ... 34

Team Member Participation

Jonathan ... 34
Matthew .. 36
David .. 37
Ryan... 38

Final Budget .. 39

Power Budget... 41

Conclusion .. 42

Type R Final Report

Page 5

Index of Appendices

Appendices:

A: Schematics
GPS ... 45
Compass .. 45
Accelerometer.. 46
Communications.. 46

B: Code
GPS ... 48
Math Functions ... 52
Compass ... 55
Accelerometer.. 58
Communications.. 63

Slave Side .. 67
Complete Program... 70

C: Altera Expansion Code.. 93
D: References.. 100

Type R Final Report

Page 6

Index of Figures and Tables

Figures:

1: Block Diagram of Robot Modules ... 8
2: Navigation Block Diagram ... 8
3: The Navigation Module ... 10
4: UART in Socket... 12
5: Bottom of the HC12 ... 13
6: Mounted Compass ... 16
7: PNI Vector 2X... 16
8: Compass on Etched Board .. 17
9: Compass Connector ... 18
10: Accelerometer on Board .. 19
11: Accelerometer Tilt Curve ... 20
12: Accelerometer Mounted in Case ... 20
13: Communications Expansion Board .. 22
14: Waveforms of Communications Protocols .. 30
15: UART Schematics ... 45
16: Compass Schematics ... 45
17: Accelerometer Schematics ... 46
18: Communications Schematics ... 46

Tables:
1: Compass Connections ... 15
2: RJ45 Color Setup... 21
3: Compass Line Settings .. 27
4: PortP Communications Setup .. 32
5: Initial Budget ... 39
6: Final Budget .. 40
7: Reproduction Budget.. 41
8: Power Budget .. 41

Type R Final Report

Page 7

Introduction

Scope

 The overall goal of this project was to design and build a robot capable of finding a golf

ball given GPS coordinates, transport the ball to a hole, given GPS coordinates and drop the ball

into the hole. Our team has been tasked with building the navigation module of Robot A. The

requirements for the Navigation Module are as follows:

1. Determine the current location of the robot using a GPS

2. Calculate the distance to travel to the ball/hole

3. Determine the current heading of the robot

4. Calculate the angle of rotation for moving to the ball/hole

5. Interface with the other modules to send/receive commands and robot status updates

We added the following additional criteria to the requirements to make the design more robust

and compact:

1. Use a digital compass to determine the heading

2. Use a single HC12 for the module

3. Implement tilt correction for 2-axis compass errors

Purpose:

 The purpose of the paper is that given the appropriate prerequisites, an engineer could

accurately reproduce or debug our Navigation Module. Prerequisites include:

1. In-depth knowledge of the Motorola 68HC12 micro-controller

2. Digital and Analog circuit design principles

3. Hardware design knowledge

4. Knowledge of the C programming language and Cosmic Compiler

Type R Final Report

Page 8

Module Overview

The Navigation module is the center of overall robot design. As such, there are no direction

connections between the other modules, except for the regulated power supplied to all by the

Chassis module. Figure 1, below, shows this design.

Figure 1: Block Diagram of Robot Modules

The Navigation Module itself is centered on a Motorola 68HC12 microcontroller and evaluation

board. The Navigation overview is shown below in figure 2.

Figure 2: Navigation Block Diagram

Communications Chassis Ball/Hole Location

Navigation

Type R Final Report

Page 9

Hardware Design

As with any robot, the choice of hardware is critical to proper operation and implementation

of the given design. We had the following hardware included in our module, encased in

aluminum housing, based on research and references from earlier in the semester.

1. Garmin GPS16: GPS receiver unit, used to determine the location of the robot.

2. PNI Vector 2X Digital Compass: Board-mounted digital compass, used to determine

the robot’s heading

3. Analog Devices Accelerometer: Mounted on a surplus board, used to detect the tilt of

the robot and correct compass errors

4. National Semiconductor Universal Asynchronous Receiver Transmitter, used to add

an additional serial port to the HC12 for GPS interfacing

5. RJ45 interface connections, used as the plug/socket connections between modules

Casing and Mounting

The original design called for a modular robot so that subsystems could be switched out

between robots. Staying with this design stipulation, we originally decided to mount all of our

components inside of a box of some type. This allowed us to easily disconnect our module from

the robot and move it to another robot. Although this design stipulation was eliminated after the

first few weeks of the semester, we decided that our robot would still maintain this modular

design. Upon conferring with the chassis group, they decided to purchase small boxes for all of

the other subsystems. They supplied us with a 3” x 5” x 7” aluminum box that would ultimately

be mounted onto the top of the robot, as we needed a high vantage point for the GPS receiver.

Type R Final Report

Page 10

It was soon discovered that the GPS receiver could not be mounted in contact with any

metal surface, as this reduced the reception of the receiver. To remedy this problem a mast was

manufactured out of 2 inch PVC pipe. The mast held the receiver about 18 inches above the rest

of the robot which we found was tall enough to ensure proper reception of all satellites, including

the WAAS satellites. This is shown in figure 3.

Figure 3: The Navigation Module

Besides the HC12, we also had to find room for the digital compass and the

accelerometer inside of the box. Our original concern was that the compass would be affected

adversely by the metal box. We discovered, however, that since aluminum is non-ferric, we

were able to mount both of the other devices inside the box without disturbing their functionality.

Details of this mounting can be found in the compass and accelerometer hardware sections.

Once a suitable system had been engineered for communications between the other

subsystems, the proper connectors could be chosen. We opted to wait until the program had

been written before we decided what type of connectors to use. The original program required

Type R Final Report

Page 11

seven lines to transfer data, including the handshake lines. There are, however, no standard

connectors that use seven pins. Because of this, we decided to use a standard 8-pin connector to

go between the modules. Searching around the lab found several found several spare RJ-45

female connectors and cable from a recent remodeling. These were to be thrown away, so we

decided to implement them. Cables were built to run between the modules, and the RJ-45 female

connectors were mounted on the outside of the box.

All components inside of our box were mounted with standard non-conductive standoffs.

The compass had to be mounted with the front of the compass facing (see compass manual for

diagram of compass board) the front of the robot, so we determined which way our box would be

facing before we mounted that component. Use of a square edge and a ruler ensured that the

compass was parallel with the side of the box. The same was done for the accelerometer.

 The physical connections that were made to the HC12 can be found in the appropriate

hardware discussion (UART, Compass, etc.) or can be seen in the schematics and block

diagrams included in Appendix A: Schematics.

Garmin GPS16

 Most all GPS units we found transmitted data via RS-232 protocol. Most also used

RS232 logic levels, although some offered TTL as well. To accommodate both of these, and to

allow for normal use of the microcontroller serial programming port, we decided that an

additional serial port would be necessary.

National Semiconductor UART

After deciding on the Garmin GPS16 receiver, we had to determine how we would

communicate with the receiver. Since the receiver sent out its information serially, we only had

Type R Final Report

Page 12

three options of how to pick up what it was sending. Option number one was to attach another

HC12 to our board via SPI and use the other board’s DB-9 serial port connector. This would

allow us to see the GPS information on our master board through the DB-9 connector to the

EVBU. This option required us to use two HC12’s, which was determined unnecessary as it

took up too much room in our box. Option number two was to program our board, and then use

the DB-9 serial port on our board to communicate with the GPS. This did not allow us to

troubleshoot easily, as we could not connect to the EVBU and the GPS receiver at the same time.

The third option (which is the one we chose) was to add an expansion serial port to the HC12

using a Universal Asynchronous Receiver-Transmitter, or UART. This allowed us to

communicate with the GPS receiver and the EVBU without using an additional HC12 board.

 Online research found that National Semiconductors offered a dual-channel UART in a

44-pin PLCC package, the PC16552D. We chose the dual UART chip, shown in figure 4,

because of preliminary claims from the communications group was that they might want a serial

Figure 4: UART in Socket

port for communicating with us. This fell through, so we had an extra serial port channel in case

something happened to the first one.

 In order to talk to the serial port, we had to find an address range that would act as our

serial port. The memory expansion attached to the HC12 used the address range from 0x1000 to

Type R Final Report

Page 13

0x7fff. It also used addresses 0x400, 0x401 and 0x402 for the expansion I/O ports and data

direction register. We chose the address of 0x410 and 0x420 to talk to the two serial ports. The

address decoding was performed using the Altera expansion board. Since the chips used 8 bit

communications and the memory expansion board uses 16 bit communications, we just only

talked to the even address in the address range by ignoring the least significant bit. Altera

Expansion Code for both memory expansion and UART can be found in Appendix C.

 With the program written in Altera for address decoding, the last step was to wire wrap

the UART to the HC12. Since the GPS receiver used RS232 voltage levels, and the HC12,

memory expansion, and UART use TTL voltage levels, a MAX232 level shifter was used. A

block diagram of the wiring can be seen in Appendix A. The connections to the pins of the

HC12 were made using the wire-wrapping technique from EE308 Lab. The bottom of the HC12

after wire-wrapping is shown in figure 5, with connections as shown in Appendix A.

Figure 5: Bottom of the HC12

 On the HC12 side, the GPS plug was a simple 4-pin header block. The GPS has a RJ45

connector with eight lines, however we need only four: Vcc, GND, Data In, and Data Out. We

placed a RJ45 socket on the side of the module, and connected the GPS to the HC12 through this

Type R Final Report

Page 14

connector, with only the four lines we need in the plug. This then plugged onto the header block,

which was connected via wire-wrapping.

 The UART required that we purchase a crystal to provide a clock. The data sheet listed

many that would work, and we purchased a 1.8432 MHz ECS crystal from Digikey, and then

divided down to get frequency of 19.2 kHz. This can be found in the UART Schematics,

Appendix A.

Precision Navigation Vector 2X Digital Compass Module

From the module requirements, we knew that we would need some method of

determining the robot’s heading so that we could calculate turning angles. A GPS could be used

to determine this (indeed the feature is built into most GPS modules), however the short

distances and slow speeds (about 4mph, as specified by chassis module) that the robot travels at

made this option undesirable at best, and highly inaccurate at worst. Therefore, we chose to

implement a design using a digital compass.

 The Precision Navigation, Inc. Vector 2X digital compass was chosen for the price and

small accuracy errors when flat. It also has a published known error when tilted, so we knew

that tilt-induced errors could be corrected for. Because of the contoured nature of the chipping

green, we determined that tilt correction was vital for proper operation and accuracy; this will be

discussed in the accelerometer hardware and software sections.

Ultimately, the deciding factor to use the PNI Vector 2X instead of a more expensive

design such as a Honeywell HMR3000 is that the Vector interfaces with the microcontroller over

the standard Motorola SPI interfacing protocols. This means that the physical connections were

limited to three wires (Slave select, Data In, and Clock) for the compass communications, plus

Type R Final Report

Page 15

lines for setting the various features of the compass, which only adds another six lines including

power and ground, for a total of nine connections to the compass. These are shown in the

following table.

Compass Line HC12 Connection
Vcc Vcc
Gnd Gnd

!XFLIP, !M/S, !BCD/BIN, !RAW Vcc
YFLIP, !RES Gnd

!SS PortS7
EOC PortDLC1
!CAL PortDLC2
!P/C PortDLC3
SDO PortS4

SCLK PortS6
!RESET PortDLC0

Table 1: Compass Connections

The compass sense the earth’s magnetic field and computes the direction based on that.

As such, there are exposed magnetometer coils on the compass board. The magnetometer coils

on the compass are published to be sensitive to having particles such as dust and dirt in them.

This meant that the compass could not be mounted outside the box, unless encased. Product

literature provided with the compass states that the compass also does not have a “conformal

coating” to protect it from moisture. This means that the compass should not be allowed to get

wet. These facts meant that we wanted to mount the compass inside the case.

The aluminum casing provided by the chassis module was acceptable to meet both of the

mounting requirements, so the compass was mounted inside the top of the case. Compass coils

are known to be sensitive to ferrous metals such steel and iron; however, non-ferrous metals such

as aluminum are ideal for mounting a compass on or in. Compass mounting to the case is shown

in figure 6, below.

Type R Final Report

Page 16

For power requirements, the compass runs on standard TTL level logic (5V +/- .25V and

GND). The specifications on the compass allow that a voltage greater than 3.15V is logic “1”

Figure 6: Mounted Compass

and less than 1.35V is logic “0.” This is compatible with the HC12. Since we are running in

slave mode at 5V levels, we only draw about 4mA during the poling cycles, and about 100µA

during idle/sleep periods, which is low enough that the power can be drawn from the HC12

(which can supply up to ~20mA on a pin).

Because the compass came as a module design, shown in figure 7, there were exposed

Figure 7: PNI Vector 2X

leads on the bottom. A board was designed using ProTel, and the tech-room etching equipment

was used to etch the board, shown below in figure 8, with the mounted compass. The compass

was then soldered to the board and mounted in the casing. Three-quarter inch insulating spacers

Type R Final Report

Page 17

were used to separate the compass from the casing, and eliminate possible contact of the coils

with the casing.

Figure 8: Compass on Etched Board

The compass has a total of 17 pins on the board (the photo shows 18, the lowest left side pin has

no connections), and some of these can be tied either together or to power or ground, depending

on the modes that the compass will be used in, and the SPI pin is not used in our design. We

chose to design the board with no pins physically tied together on the compass module, or to tie

pins on the etched board together, as this would not allow for possible future expansion, such as

raw magnetometer output instead of heading output. The pins that could be physically (see

Table 1) connected for our setup were tied together during the case construction and connector

mounting via the wire-wrapped connections to the HC12. This method would be easy to undo if

changes or expansions were later made. The wire wrapping was done on the bottom of the HC12

board (Figure 5), to the plug that was installed in the expansion area of the HC12. Please refer to

Appendix of Schematics, for a diagram of the compass connections.

Type R Final Report

Page 18

Figure 9: Compass Connector

 For the connection to the HC12, we used a single 16-wire ribbon cable with IDE 16-pin

connectors on either end. Both the compass board and the HC12 had blocks of 2x8 pin header

pins mounted on, and the ribbon cables simply slid onto those. We especially liked this design

since the design of the IDE plugs was such that they could not physically be connected to the

side of where they should be, as the exposed pins would block the wide plug.

Because the chassis is using motors to drive the robot, we had some initial concerns about

the effects that the magnetic fields would cause. The compass is not capable of correcting or

calibrating for these types of field. We alleviated this concern by implementing a design that

only took headings when the robot was stationary, when the fields were roughly constant. This

eliminates most of the errors.

Analog Devices ADXL202JQC Accelerometer

The PNI Vector 2X digital compass utilized for heading determination was known to

have errors for a given tilt, or angle of attack (AOA). The latitude of compass usage determines

the error for a known AOA. In central New Mexico, where the robot has been developed, the

digital compass information loses approximately three degrees of accuracy for every one degree

Type R Final Report

Page 19

of tilt in both the x and y axes. To correct for this error, we have employed a two-axis

accelerometer developed by Analog Devices.

The Analog Devices ADXL202JQC Accelerometer, shown in figure 10 mounted on the

circuit board, was chosen for the task of tilt-correction primarily for ease of use and cost. The

ADXL202, when powered by a required +5V DC signal, presents a pulse-width-modulated

signal from both the x- and y-axis outputs. Optimally, at zero degrees of tilt, the PWM output

signal has a 50% duty cycle. With our chosen calibration resistors and capacitors, this duty cycle

Figure 10: Accelerometer on Board

varies with tilt up to a maximum of approximately ± 12.5%. For ease of calculation, we initially

made the assumption that the completed robot would never see a tilt of more than ±15 degrees in

either axis. This decision was based upon the essentially linear operation of the accelerometer up

to about 15 degrees. Beyond 15 degrees, the rate of change of the accelerometer changes enough

to be problematic in calculation. The characteristic for the accelerometer change in output can

be seen in Figure 11. The manner in which the program determined the acceleration proved,

however, that we could in fact use the compass through any range of tilt we desired. A

maximum tilt of ±30 degrees was chosen for convenience, however. The circuit we generated

for the accelerometer can be seen in Appendix A. The component values shown in the circuit

Type R Final Report

Page 20

were chosen to give a period of the accelerometer output of approximately 2 msec. In practice,

however, neither the accelerometer, nor the components, was perfect and thus we managed a

period of approximately 1.68 msec.

Delta Per Degree of Tilt

-5

0

5

10

15

20

-90 -75 -60 -45 -30 -15 0 15 30 45 60 75 90

Tilt Angle (Degrees)

D
el

ta
 P

er
 D

eg
re

e
(m

g)

Delta

Figure 11: Accelerometer Tilt Curve

The accelerometer was mounted in the case in such a manner to facilitate ease of use and

calculation in conjunction with the digital compass. The accelerometer was mounted on the high

side of the module, in-line with the compass. This placed the accelerometer axes in-line with

those of the compass. The mounting was accomplished by drilling holes through the top of the

module’s aluminum casing and placing screws with spacers on them through the board. The

Figure 12: Accelerometer Mounted in Case

accelerometer was then attached to the HC12 itself using a small, four-pin ribbon cable and the

requisite 4-pin header attached to the HC12. On the accelerometer board, we used a 4-pin Molex

Type R Final Report

Page 21

connector attached to the underside of the board, with connections soldered to the wire-wrapped

leads on the top of the accelerometer board (can be seen in figure 10, lower left). Connections to

the HC12 can be seen in the included schematics in Appendix A: Schematics

Communications

 Even though we chose to implement a design based on the HC12’s simple SPI interfacing

protocol, the actual physical interface was a bit complicated. Due to the availability of female

RJ45 sockets locally, we chose to implement a design for interfaces based on the RJ45’s eight-

wire conductor Pattern B. The male plugs were provided by the chassis module. The eight lines

in the RJ45 are Blue, Blue and White, Green, Green and White, Orange, Orange and White,

Brown, and Brown and White. Physical line connections are listed below, as seen by the

Navigation Module as the master device. Significance of the lines will be discussed in the

Communications Software, Appendix B. For ease of interfacing this protocol onto our HC12,

we built an expansion, shown in figure 7, board that would fit onto the top of the HC12. Header

pin extensions were used plug the board onto the top of the HC12, as shown in figure X3. The

connections from the RJ45 sockets on the side of the module were soldered to the corresponding

pins on the HC12. Schematics can be found in Appendix A. To hide the solder joints and

Line Color Function in Communications
Green Input Capture, PortT2, 4, and 6
Green / White Master In Slave Out,
Blue Slave Select, PortP0, 2, and 4
Blue / White Master Trigger, PortP1 and 4
Orange Master Out Slave In, PortS5
Orange / White SPI Clock, PortS6
Brown Dedicated stop line
Brown / White Not used, reserved for future expansion

Table 2: RJ45 Color Setup

Type R Final Report

Page 22

prevent the pins and lines getting bent and touching together, a black box was installed over the

“expansion board.” This is shown in figure 13.

Figure 13: Communications Expansion Board

 For ease in interfacing, we had a robot-wide meeting in which the details of the

interfacing were discussed, including a description of the hardware setup required. A list of

connections to the HC12’s was distributed to each of the three other subsystems. Additionally,

we tested and had meeting with each module separately to test the hardware interfacing.

 For the patch cables we used straight lines of Ethernet cable (pattern B), set up as a

straight through with no line crosses. We made three cables, all interchangeable and distributed

to the groups. They were made using standard cable, connectors and crimpers.

Software Design

As in the hardware section the software discussion will be broken up by function: GPS,

String Parsing, Math Functions, Compass Setup and Data, Accelerometer Setup and Data, and

Communications.

GPS

The GPS emits several ASCII strings when power is applied, regardless of whether the

positions are based on satellite data or not. This data comes at a configurable rate of once a

Type R Final Report

Page 23

second. We configured our receiver to send only one string out of about 10 or so built in. This

string gave:

• UTC (GMT)

• Degrees and minutes up to 1/10000 min in latitude and longitude (decmin)

• A number signifying whether the data being transmitted is accurate, as well as

whether WAAS corrections are available

• The number of satellites being tracked

• Elevation in meters above sea level

• Horizontal dilution of position (HDOP): a measure of how probable a given location

is to being correct

• Height of Geoid above WGS84 Ellipsoid

• A checksum, consisting of all characters up to the checksum field save the leading '$'

NMEA strings are comma delimited, so it is simple to find the data field needed and

pluck the integers out. Simply count commas to find correct data field, so we then know where

the head of the number we want is. Depending on how large the number is (all numbers have a

consistent size in the string), we can subtract the value of ASCII 0, then multiply by the decimal

power for which this character sits in the number, and add all of them together.

We decided to break the actual positioning data into integers: one each for the x and y

degrees, the x and y whole number minutes, and the x and y fractional minutes. Since in the

given specifications, the distances were relatively small, at least less than a whole minute, we

concluded that it was feasible to only use the fractional minutes of position to calculate distance

and heading information. Therefore we used units of decimal minutes (decmin). A simple check

for minute rollover makes this a safe assumption.

Type R Final Report

Page 24

 Code for parsing the GPS string can be found in Appendix B: Code, the GPS section

Math Functions

 Going to many Internet sites, you can find a Great Circle calculator that will tell you the

distance and angle from north between two GPS coordinates. These calculations use a series of

sine and cosine calculations and are extremely accurate over long distances by taking the

curvature of the earth into consideration. We found out that all of our movements would be on a

chipping green, with our greatest distance of travel not to exceed 150 feet. Across a distance this

minute, the curvature of the earth is negligible. This means that our calculations can be

considerably simplified. Instead of using the Great Circle calculations, we can assume that the

chipping green is an X-Y coordinate plane. A difference in longitude shows up as a difference

on the X-axis, while a difference in latitude shows up as a difference on the Y-axis. By using

Pythagorean’s theorem and some simple Trigonometry, we could easily find the distance to

travel and the angle from north to traverse between one coordinate and the other.

 The HC12 has some libraries and header files which can be included that would help in

these calculations. There is, for instance, a square root function and a tangent function included

that would be very useful in our calculations. Both of these functions use double floats to make

their calculations. With these included functions, we could do all of our calculations with only a

few lines of code. The HC12, however, doesn’t include a print statement in DBug12 that will

allow the user to view floats. The only way to view floats is to write your own printf function.

Floating-point calculations also take up much more memory than integer calculations. For these

two reasons, we opted to perform all of our calculations using integer math. Although these

calculations were not quite as accurate as the floating-point arithmetic, the error was within

Type R Final Report

Page 25

reason. We could still get as close to the target as the Ball-Hole locator group demanded. The

code for the integer arithmetic was much longer, but it compiled smaller than the floating-point

arithmetic would. It was also much easier to fix any problems that arose.

 By using Pythagorean’s theorem and trigonometry, we could easily find the distance and

angle from the robot to the target. Pythagorean’s theorem calls for a square root of the two sides

of a triangle in order to determine the length of the third side. To find the angle, we had to use a

tangent function. This means that we had to generate a square root function and a tangent

function using only integers. For the square root, a simple FOR loop was written that would start

with a guess of value zero, square it, compare it to the value to be rooted, and increment the

guess value until it found the root. This always rounded down, but this problem was ignored.

The tangent function used a look-up table by comparing the ratio of the two sides of the triangle

to the values in the table. The X-Y coordinate plane was divided up into the four quadrants. A

few IF statements determined which quadrant the coordinates were in. The look-up table only

has 45 values in it. This is because the tangent values from 0 to 44 are inversely proportional to

the tangent values from 45 to 90. By finding the values of tangent 0 through tangent 44, and

applying a few other lines of code, we could find the actual angle from true north to travel to

arrive at the target.

 This process resulted in distance units of decmin (decimal minutes) and angular units of

degrees. When distance and angle commands were passed the chassis module, they had these

units. One decmin is approximately equal to .8 feet, or 9.6 inches.

 The code for the math functions can be found in Appendix B: Code.

Type R Final Report

Page 26

Compass Setup and Data

 For interfacing with the HC12, the PNI Vector 2X uses the standard Motorola SPI

interface, which was one of the primary reasons it was selected. There are two options in setting

up the compass output: Binary Coded Decimal (BCD) or Binary. A discussion of differences

can be found in Appendix D: References, compass handbook. We chose to implement the

binary method since the math was simpler than the BCD, and the output would be equal to the

heading, without masking and performing math on certain bits. Because the compass outputs a

full 0° to 360° swing, and the char variable is limited to 255,we had to have two transfer cycles

of the SPI, with only the last bit of the first transfer (bit 0, or the LSB) being important.

 The SPI on the compass is built so that the compass transmits each bit of data on the

falling edge of a clock that has a high polarity. These settings were made on the HC12

according to the register setup described in the HC12 manuals (the “Beige Book”). The compass

is specified to be able to transfer data at up to 1 MHz, for testing, we ran the SPI at 500 kHz, set

up in the SP0BR register. We had some issues during testing, so we ran the clock even slower.

During interface testing, communications module that we run the clock as slow as possible so

that they could meet their timing requirements and this meant that the SPI ended up being run at

only 31.3 kHz. However, this did not affect the compass.

 Since we have a nine-bit number, an unsigned integer-value variable was used in the

program. The SPI transfers only eight bits at a time, so the following steps were used to retrieve

the heading from the compass.

1. Transfer 1: the upper 8 bits of compass output (only bit 0 important)

2. Save to temporary variable, heading1

3. Transfer 2: lower 8-bits of heading (all important)

Type R Final Report

Page 27

4. Save to temporary variable, heading2

5. Place heading2 into the integer heading variable, robot_heading

6. Check bit 0 of temp1. If value is “1”, add 256 to robot_heading. If “0” do not

modify robot heading

7. robot_heading now contains the compass heading and can be used in calculations,

An interesting bug developed while doing this: this method worked well as long as the dummy

variable that the HC12 was sending to the compass (which was not actually connected to the

compass) was 0x00. Any other values would cause the SPI to receive only the “dummy” values

we placed in the SPI Data Register (SP0DR).

For setting up the compass, we wanted is to be in slave mode, binary output, not pole data

continuously, not raw data output, low resolution (acceptable for our area of the country and

recommended in the manual), do not flip the directions (compass is mounted right-side-up with

no rotation), and send MSB of heading first. The following lines needed to be set:

Line on Compass Value needed in settings
!P/C 1

!RAW 1
!M/S 1
!RES 0

!XFLIP 1
YFLIP 0

Table 3: Compass Line Settings

Since these lines would not change in our setup (unless the robot was upside down and still

needed a heading, which would be a bit of a problem…) they were physically tied to Vcc or

ground to eliminate the extra connections and lines of code needed to set them.

 Because we need to calibrate the compass when we power on, a calibration routine was

written, following the guidelines from the compass manual. This stipulated that the following

procedure:

Type R Final Report

Page 28

1. Power on the compass

2. Bring !CAL low for at least 10msec, then bring back high

3. Rotate 180°

4. Bring !CAL low for at least 10msec, then bring back high

This allowed us to correct for the static magnetic fields and hard-iron that were on the robot.

For the rotate 180°, ideally we would send a command to chassis that would rotate and then

inform us when finished. Since we were unable to test with the chassis module, for testing

purposes we implemented a protocol that would inform the user to rotate the compass, wait three

seconds, and then finish the calibration. This turned out to work very well.

 There was a bug that appeared in the compass, and is in fact mentioned in the handbook:

it is a requirement that certain lines (such as !P/C and !RES) must be set either high or low

before the power is supplied to the compass. Since we were running off the HC12, the power

would be supplied as soon as the HC12 turned on, thus the setup requirements would not be met

because the power would be on before lines were set. However, there is a work around.

We were able to power the compass and setup the lines as needed initially, we then ran a

reset on the compass, which overwrote the setup, and met the requirements. For some reason

that is still unknown, we had to run a reset before each reading for headings. This is not an issue

to the accuracy, since the calibration settings are not erased during this procedure, and was only a

minor annoyance and short delay (16 msec) in the program.

 Compass code can be found in Appendix B. The handbook from PNI is available for

download. The link can be found in Appendix D: References.

Type R Final Report

Page 29

Accelerometer Setup and Data

Using the Motorola 68HC12 microcontroller with which we were furnished previously, it

was a simple task to interpret the output of the accelerometer. We set up two bits of the HC12's

Port T, Pins PT1 and PT3, as input capture ports. The only other connections from the

accelerometer to the HC12 were for power and ground.

In the initial accelerometer setup, both of these capture pins are made to capture rising

edges. This allowed us to determine the time of the first PWM signal edge. Once the first edge

is captured and the appropriate flags are cleared, the input capture pins are reconfigured to

capture falling edges. This then captures the falling edge of the PWM signal. Simply subtracting

the rising edge time from the falling edge time gives an accurate measure of how long the PWM

output is high. The program then reconfigures the input pins to again capture rising edges,

allowing the time of the third edge of the PWM signal to be captured. This provides for

calculating the total period of the PWM. This is done by subtracting the first rising edge time

from the second rising edge time. This data, when used with the logic high time, allows for the

calculation of the PWM duty cycle through a division calculation (high time divided by total

time to give percent duty cycle. Once the duty cycle is determined, a formula provided in the

ADXL202's datasheet was used to calculate the acceleration in both axes. Once the acceleration

had been determined, an if-else comparison is used to find the corresponding angle. This

information can then be used to correct the heading information derived from the digital

compass. The method of correction was determined from our knowledge of the compass’ error.

According to specifications, the compass would lose three degrees of heading accuracy for every

single degree of tilt. In testing, this proved to be overkill, and we were able to use a correction of

Type R Final Report

Page 30

two degrees for every single degree of tilt. The correction was simply added or subtracted, based

on the direction of tilt, to the compass heading.

There were two major hurdles in the development of this program. The first was the

initial use of interrupts to determine the timing. It seemed as though ghosts in the machine

prevented the HC12 from working properly with the accelerometer while interrupts were

enabled. The second hurdle was in getting an averaging routine to work with the accelerometer.

Due to sensitivity of the accelerometer, it was necessary to implement an averaging routine such

that the compass would hold data when it wasn’t moving. It took several revisions of code to get

averaging working correctly, but in the final program it worked correctly with several layers of

averaging taking place before the final calculations. The completed program can be seen in

Appendix B: Code.

Communications Protocols

 For communications, we chose to use the simple Motorola SPI interface already on the

HC12. It had the advantage of being able to share a clock and data lines between all the slave

devices (compass and the three other modules on the robot) and use a separate slave select line

for each of the other modules. We also chose a design that would use additional handshaking to

help ensure that all modules were in the proper states to receive or send data. A waveform

outlining the design is shown below. This is the design that was ultimately used by the other

subsystems.

Figure 14: Waveforms of Communications Protocols

Type R Final Report

Page 31

The protocol worked as follows:

1. Master would raise a trigger line telling slave that we wanted to transmit. Master

would go into a “wait state” for a return signal

2. This would cause an interrupt on the slaves’ input capture timer lines and set a flag,

receiving = TRUE. The receive function would be called.

3. The receive function on the slave would send a trigger line high, causing an interrupt

on the master HC12, and the transfer would begin.

4. Both master and slave would wait for the SP0SR register flag to be set, read the data

out (to clear the flag). All flags (such as receive on the slave) would be reset to

FALSE and the function would terminate. This completes the transfer.

Sending data from slave to master followed a similar cycle, except that the master does not start

the first handshake. In this case, the only difference is that the master’s trigger line is not used at

all. The rising edge of the slave trigger would cause an input capture timer interrupt, and

because the master knows that it is now sending data, a receive from slave function would be

called.

 The communications module informed us that they would not be able to run at a high SPI

clock speed, so we ran at only 31.3 kHz (set up in the SP0BR register) and this made all the

groups happy, since Ball/Hole and chassis did not have any preferences.

 Since we needed to have three different slave select lines on the HC12, one for each

module, we chose to use a generic I/O port that was not being used to be our trigger and slave

select lines. Since our module does not use Pulse Width Modulation, we used PortP for the

communications lines. PortP was setup as follows:

Type R Final Report

Page 32

Port Number Description
PortP0 Slave select for chassis module
PortP1 Master trigger for chassis module
PortP2 Slave select for ball/hole location module
PortP3 Master Trigger for ball/hole location module
PortP4 Slave select for communications module
PortP5 Master trigger for communications module

Table 4: PortP Communications Setup

For the trigger line flags to get set, we needed method to capture the change in level in the lines,

so we chose to use the timer ports on the HC12 setup as input capture. The type of edge was not

important, and the decision to use idle low and capture the rising edges was arbitrary at best. We

had a few discussions among the modules and nobody had and issues with this setup.

 On initial startup, we send a command to communications and the waited for a sequence

of eight transfers in return. These consisted of the target coordinates of the ball and the hole.

These were also used as the START command.

 The communications setup is also where we chose to implement the STOP/PAUSE

command from communications module. It works as follows:

1. Rising edge is received on TIC0 (Timer 0, input capture)

2. Stop and enter the interrupt

3. While PortT0 is still high, wait

a. A stop command will result in a line that stays high indefinitely, so we never

leave the function. STOP never leaves this place.

b. A pause command will stay high for a while, then drop

4. Resume code

This was never actually tested, and we do not know if the communications module had

implemented the function.

Type R Final Report

Page 33

Main Program Flow

Initialization

The initial hardware setup starts with all the expansion serial port setup (setting flow control,

modem settings, internal interrupt signaling, FIFO initialization, and data rate). Then the

compass is setup by calling the compass setup functions. The SPI registers are then setup for

communication with the compass as well as with the other subsystems. After communication is

setup, the compass can then be calibrated to compensate for nearby magnetic fields.

Initial coordinates/Start

A sequence of eight bytes is then requested from the communications subsystem. The first

two bytes become an integer representing the x coordinate of the ball, the next two the y

coordinate. Similarly, the next four are the x and y coordinates of the hole. The completion of the

eighth byte signals the start of the ball finding loop.

Finding Ball

After the current position and orientation of the robot is found. The distance calculation

function is then called, which returns a flag as to whether the position is close enough for the

ball/hole locator to find the ball. If the distance is under about 8 feet, then the loop is broken and

the locator subsystem is signaled to find the ball. If the distance is greater, an angle to rotate to is

calculated and one of two things may happen. If this distance is less than about 30 feet, then the

chassis is signaled to rotate the calculated angle and move that distance. If the distance is greater,

the robot rotates the prescribed angle, but only travels half the distance. This is due to

Type R Final Report

Page 34

inaccuracies in the distance calculation function. Below this threshold, better measurements can

be made. This process is repeated until the approximate eight foot threshold is met.

Ball capture

After the ball locator is signaled to start, it sends commands to move through the navigation

subsystem to the chassis, which makes movement corrections. The navigation subsystem is not

involved in this process except for the relaying to the chassis.

Hole location/Drop-off

The above location process for ball capture is then repeated for the hole location and ball

drop-off.

Team Member Participation

 For this section, each member wrote his own job descriptions, so the use of “I” and “my”

is intentional and meaningful. This also accounts for the different writing styles that prevail in

this section.

Jonathan

 This project was divided up into several pertinent tasks at the beginning of the semester.

My tasks are outlined below:

• Work with Dave in understanding the GPS receiver

• Write Altera code to allow for expansion serial ports using a UART

• Wire wrap UART chip and Max232 level-shifter

Type R Final Report

Page 35

• Write custom integer math functions for determining direction and heading of robot

travel

• Mounted all components into our module and made all internal connectors

The beginning of the semester saw our team dividing into the compass/accelerometer

group and the GPS group. Dave and I decided to start working on the GPS receiver. We

received some evaluation software from Garmin that allowed us to talk to the GPS receiver

through a standard serial connector on a computer. We discovered that the GPS receiver used

RS232 voltage levels, and the computer used TTL voltage levels, so a level-shifter was required.

Once we knew what was coming out of the GPS receiver, I started writing the Altera code to

decode the address lines coming into the UART chip. Once this was completed, I began wiring

up the UART chip and the level shifter. These were attached on the expansion section on the

HC12 board. I eliminated expansion PORTA on the memory expansion module and used this to

run the lines for selection of the UART chip. Testing of our board showed that we could

communicate with another board using the serial port.

As soon as this was completed, Dave started writing the code to parse the string of

information coming in from the GPS receiver. Feeling useless for having completed my pre-

assigned tasks, I immediately began working on the math functions for determining the robot

distance and heading to target given the GPS coordinates. These were done with custom integer

math functions that were relatively simple in their design and implementation. The code

complied small, but wasn’t quite as accurate as the floating-point arithmetic would be. Testing

of this with Dave’s code showed proper operation.

When this was all completed, I began hardware mounting and internal connections. Our last

step was final integration with everyone else and final code generation. Although the final

Type R Final Report

Page 36

program flow was completed, final integration with all groups was not completed as of the time

this report was due.

Matthew

My primary tasks in working toward the completion of our module included the design

and etching of circuit boards and the implementation of our accelerometer for tilt correction of

the onboard digital compass.

The circuit boards I constructed were made for interfacing the digital compass and the

accelerometer to our HC12. Both boards were design using a version of ProTel that was

included in the network software of the EE labs. The compass interface board included traces to

connect all of the pins on the compass to a header that made it possible to interface with the

different subsystems of the HC12 using a ribbon cable. The accelerometer board was much the

same, but contained pads for a number of components to be added in addition to the surface

mount accelerometer itself. In the end, due to numerous problems with both the board-etching

process and the accelerometers we had originally chosen to use, the accelerometer board was

discarded in favor of a board provided to us by Dr. Rison.

My other major area of expertise on our part of the robot was in writing the programs to

interface the accelerometer with the HC12. This in itself was not complicated, but several

problems crept up along the way. The first problem was the use of interrupts in the initial

program to capture edge timings for the accelerometer. This problem had a number of possible

causes, including running out of room in the stack on the HC12. As it could not be determined

what was actually causing the problem with interrupts, I decided after talking with Dr. Rison to

move away from interrupts. The next problem came with using averaging in the program. The

Type R Final Report

Page 37

accelerometer reading tends to jitter about even when it is sitting still, and so I decided that

averaging needed to be implemented. However, it took several versions of code to make this

work and in the end averaging only worked in the final program and not in any subsequent

version of the code. The final problem we had was with an incompatibility with the compass

that caused the accelerometer program to miss capturing edges in its routines. This was solved

by disabling interrupts in the accelerometer function.

My final contributions to this project came in the same manner as those of my teammates

– namely, in troubleshooting, proofreading, and similar mundane tasks. I also did a great deal of

the photography that was seen both in our presentation and this final paper.

David

 My primary objective was to get information from the GPS into some useful form for

heading and distance calculations. We had all decided early on that since all the GPS units we

found spoke RS232, so the plans for extra serial ports were in the works from the early weeks.

Jon and I worked on both the alterations to the Altera memory expansion to memory map the

port, as well as the decrypting of the data sheet to figure out what connections we needed. I also

figured out how to initialize and test the serial port once it was finally programmed and wire-

wrapped.

 I played with the GPS and determined the magic string that gave us all the information

we needed. Then Jon and I started on getting the serial port to actually read characters in. It

would write quite well, but the reading would all smear together. Later on, I discovered the data

ready bit on the port, and read quality got much better. After that, reading the GPS went quite

well. I also wrote all the final code to read, parse, and extract the needed data from the reading.

Type R Final Report

Page 38

I also constructed all the cabling for communication between subsystems and between all

the sensors and the microcontroller board, as well as final program flow and layout, and slapping

all this engineer code into shape. And hundreds, nay, thousands of hours of testing.

Ryan

My duties this semester included:

• Initial research and proposing ideas about the type of GPS and compass we should

use

• Ordering the components we needed

• Writing the compass code and testing the compass for correctness and accuracy

• Writing the communications protocols and code and testing the communications

interfacing

Early on in the semester, I took it upon myself to begin conducting research into the

various GPS’s and compass that were available in the marketplace. This included many hours of

on-line research and phone calls to various manufacturers and suppliers. I narrowed the initial

choice down to three or four GPS’s and compasses and then the group made a joint decision

about what should be ordered. As I had been chosen as the purchasing representative during the

first week of class, I ordered the equipment we decided to use, including the GPS and compass.

Also order samples of UARTs, accelerometers and sockets as needed.

As soon as all the initial proposals and presentations were finished, I worked with Matt to

etch the boards that we would need for the compass and accelerometer mounting in the case.

Because I was the one that was most familiar with the layout, I spent a week working with Matt

and tweaking the board designs. I also assisted in etching the.

Type R Final Report

Page 39

Repeated equipment problems turned what should have been a one, perhaps two, day

project into a three week project. Even after putting so much work into the boards, we ultimately

abandoned the accelerometer board for a surplus board donated by Dr. Rison.

As the semester progressed towards (and beyond) midterm, I became primarily

responsible for the compass, and the communications interfacing and software. For the compass,

I wrote all the setup and function calls that are involved in using the Vector2X, and gave these to

Dave to be integrated into the main Navigation Module code.

Additionally, I worked with Jon to develop a system of physically integrating the

compass to the HC12. This included the primary decision of what type of wire (the 16-line

ribbon cables) and connectors (16-pin IDE to a 16 pin header block) should be used.

At the end of the semester, my final contributions came in the form of endless hours in

the Digital Lab testing and re-testing. This included many hours with Azmat from Ball/Hole

location module testing my communications protocols. I also wrote most of the final

presentation and worked on writing, proofing and correcting the final report.

Final Budget

 Our initial budget for this project was $300.00 dollars. This is shown in Table 5.

Item Name Price ($)
Garmin GPS16 122.00
PNI Vector2X 50.00
ADXL202AE Accelerometer 0.00
Module Casing 40.00
Miscellaneous IC’s 20.00
Miscellaneous wiring, etc. 50.00

TOTAL ~$300.00
Table 5: Initial Budget

Type R Final Report

Page 40

 Our final budget is included below. It contains a list of all expenditures made through

both Norton’s shop and various online resellers. We are proud to note that our total expenditure

of $242.71 is well under our projected budget of $300. Several items made this possible. First,

we were able to purchase our GPS, with an academic discount, direct from Garmin. In addition

to receiving our GPS at a discount, we received Windows-based software for the GPS for free.

Item Quantity Unit Cost
Total
Cost

Garmin GPS16 GPS Receiver 1 $137.00 $137.00
PNI Vector2X Digital Compass 1 $52.68 $52.68
C-Thru Protractor 1 $2.13 $2.11
14 Pin Ribbon Cable Connector 1 $2.00 $2.00
14 Pin DIP Socket 2 $1.50 $3.00
Miscellaneous Pins 5 $0.60 $3.00
Defluxer, 12 fl. Oz. 1 $12.20 $12.20
6" x 6" PC Board 1 $5.00 $5.00
Masking Tape 1 $3.50 $3.50
100 Ohm Resistor 1 $0.10 $0.10
120 Kilo-Ohm Resistor 1 $0.10 $0.10
0.1 Micro-Farad Capacitor 3 $0.10 $0.30
DB9 Ribbon Connector, Male & Female 2 $2.00 $4.00
2 Pole Pushbutton Switch 1 $1.50 $1.50
16 Pin Ribbon Cable Connector 2 $2.00 $4.00
Small Connectors 3 $0.60 $1.80
PerfBoard 9 sq in $0.50 / sq in $4.50
6-32 x 3/4" Screws 4 $0.10 $0.40
6-32 x 3/8" Non-conductive Spacers 4 $0.10 $0.40
6-32 Nuts 4 $0.03 $0.12
4" x 4" x 1/8" Plexiglas 2 $1.00 $2.00
PVC Pipe 3 ft $1.00 / ft $3.00

Motorola 68HC12 Microcontroller 1 $0.00 $0.00
Analog Devices ADXL202
Accelerometer 1 $0.00 $0.00
National Semiconductor UART
PC16552D 1 $0.00 $0.00
3" x 5" x 7" Aluminum Case 1 $0.00 $0.00
RJ45 Connectors 1 $0.00 $0.00
Power Cords 1 $0.00 $0.00
Epoxy 1 $0.00 $0.00
44-Pin PLCC Socket 1 $0.00 $0.00

Total Expenditures $242.71
Table 6: Final Budget

Type R Final Report

Page 41

Also, we received our accelerometer free of charge as they have now been discontinued. Finally,

we received a number of our parts as donations, not the least of which was the Motorola 68HC12

microcontroller that was used as the brains of our module. Further donations came from Dr.

Bruder in the form of the 44-pin PLCC socket that was used to hold our UART, and the casing

for our module that was donated by the Robot A Chassis Group.

Motorola 68HC12 Microcontroller 1 $80.00 $80.00

Memory Expansion for HC12 1 $70.00 $70.00
Analog Devices ADXL202
Accelerometer 1 $13.60 $13.60
National Semiconductor UART
PC16552D 1 $5.00 $5.00
3" x 5" x 7" Aluminum Case 1 $12.00 $12.00
RJ45 Connectors 1 $5.00 $5.00
Power Cords 1 $7.00 $7.00
Epoxy 1 $3.99 $3.99
44-Pin PLCC Socket 1 $.89 $0.89

Total Additional Expenditures $197.48
Table 7: Reproduction Budget

Power Budget

 Since we were never able to run off the chassis power while running the programs and

interfacing with other module, the below power budget is approximate. Measurements, while

running tests, produced readings that were similar.

ADXL202JQC Accelerometer 2mA @ 5V
Garmin GPS16 80mA @ 5V
PNI Vector 2X 6mA @ 5V
68HC12 with expansion 150mA @ 5V

TOTAL 238mA @ 5V
Table 8: Power Budget

Type R Final Report

Page 42

Conclusion

This project was a mixed bag of good and bad. While it was nice to have a different

project that previous classes have had, ultimately this project, as presented, was a bit too long for

a single semester. We feel that we were at about 95% done. The missing 5% is accounted for in

the integration part of the entire robot. We were able to test integration with both

Communications and Ball/Hole modules. However, we were never able to test with all three

other modules, so that aspect of the design remains untested, hence the 5%. We did test with

Chassis individually, so we believe that the integration could have been completed in a small

amount of time once the Chassis module got to this stage and was ready to integrate.

To do this project over again, the biggest change we would make would be to spend a bit

more of the total $2000 budget that each robot had. Specifically, since the Vector2X was not

always reliable, we would perhaps like to have purchased something like the Honeywell

HMR3000 series. However, that unit costs over $350, so perhaps a happy medium between the

Vector and HMR could be found. The GPS was a good product, but perhaps we could have

combined the compass and GPS budget together and purchased a GPS with built in compass.

This may have ended up being a handheld, but they still have a serial interface.

The single biggest challenge in this project was integration. This is itself should not have

been bad, but the Navigation Module is responsible for most of this, and we were not able to test

with other modules until they reached completion. This did not happen until about the last week

or two of the semester. We had hoped that by distributing code a pin-outs for the

communications that this would help come integration time, but most of the problems seemed to

be more hardware (i.e. the HC12’s the other modules were using) rather than software based. We

Type R Final Report

Page 43

believe that if all the modules would have gotten to the integration stage even a week earlier, the

class would have had working robots.

Type R Final Report

Page 44

Appendix A: Schematics

This appendix contains schematics, in block diagram form, of the physical connections that were

made to the 68HC12 board from the added hardware, such as UARTs and Compasses. Passive

elements, such as capacitors, have been added to the schematics where appropriate. Most of the

physical connections were made with the wire-wrapping techniques, as explained in the

Hardware Section, except for the Communications block, which was soldered to expansion

header pins.

Type R Final Report

Page 45

UART

Figure 15: UART Schematics

Compass

Figure 16: Compass Schematics

Type R Final Report

Page 46

Accelerometer

Figure 17: Accelerometer Schematics

Communications

Figure 18: Communications Schematics

Type R Final Report

Page 47

Appendix B: Code

This appendix is divided into six sections: GPS, Math Functions, Compass, Accelerometer,

Communications, and Complete Program. Code for UART setup is included in the GPS section,

and additional UART setup is shown in Appendix C: Altera Code. For ease of understanding

some of the setup code, we recommend that you look at Appendix D: References for the manuals

and data sheets that describe the settings. The complete code is 1270 lines long. In this

Appendix, each part of the code (GPS, Math, Compass, Accelerometer, and Communications)

has its own section and starts on a new page; this makes individual pieces of the code easy to

locate by page number. The last section in this Appendix is the Complete Code, and is included

last as a reference for how the completed code was structured overall.

Slave code, as distributed to the other modules, is included in the communications code section.

Type R Final Report

Page 48

GPS

void setupuart1 () // this function sets up the UART
{

DBug12FNP->printf ("uart setup \r\n");
S1SETUP1 = 0x00; // Figure out interrupts
while ((S1SETUP2 & 0xc0) != 0x00)
 S1SETUP2 |= 0x01; // turn on FIFOs
// S1SETUP2 &= ~0x01; // turn off FIFOs
S1SETUP4 = 0x00; // turn off some modem crap
S1SETUP3 = 0x03; // set parity and stop settings
S1SETUP3 |= 0x80; // enter set data rate mode
S1SETUP0 = 24; // set for 4800
S1SETUP1 = 0x00; // I dunno why, just ‘cause
S1SETUP2 = 0x00; // turn off other features
while ((S1SETUP3 & 0x80) == 0x80)
 S1SETUP3 &= ~0x80; // set r/w mode

D (DBug12FNP-> printf ("ch1: dlab %s\r\n",
 ((S1SETUP3 & 0x80) == 0x80) ? "set" : "reset");)
D (DBug12FNP-> printf ("ch1: fifos %s\r\n",
 ((S1SETUP2 & 0xf0) == 0xc0) ? "on" : "off");)
DBug12FNP->printf ("setup complete: entering read loop\r\n");

}

/*************** get one byte from the serial line ******************/

unsigned char get_gps_byte (short which)
{

volatile register char status = 0; // declare as volatile
if (which == 1)
{
 status = S1SETUP5;
 if (status & 0x08); //printf("FE\r\n");
 while ((status & 0x01) != 1) // check the status
 { status = S1SETUP5; if (status & 0x08); }
 return (S1DATA & ~0x80);
}

/* deprecated */

else if (which == 2)
{ while ((S2SETUP5 & 0x01) != 1); return (S2DATA & ~0x80); }
else /* debugging */
{ _asm (" ldd #$0xdead"); _asm (" swi"); }

}

/* get an entire string from the durn GPS thing */
/* this handles the specifics of beginning and end */
/* now with checksums and a flavor the whole family can enjoy */

/*
 2 examples: this is the shortest a string should be
 $GPGGA,214722,3403.9876,N,10654.4448,W,0,00,,,M,,M,,*41

Type R Final Report

Page 49

 $GPGGA,214724,3403.9876,N,10654.4448,W,0,00,,,M,,M,,*47
*/

short get_gps_cmd ()
{

short i, j;
char trash;

LOOP:
{
 char checksum = 0, incs = 0;
 for (i = 0; i < 100; i++) /* clear out this string */
 gpsinstr[i] = '\0';
 gpsinstr[0] = '$'; /* insert 2 characters that for some */
 gpsinstr[1] = 'G'; /* reason don't get there themselves */
 trash = S1DATA; /* clear the recd bit */

 /* wait for the head of a good string */

while (get_gps_byte (1) == '$');

/* read bytes from GPS until we see a newline: then we're ready to
check it */

 for (i = 2; (gpsinstr[i] = get_gps_byte (1)) != '\n'; i++);
 gpsinstr[++i] = '\0'; /* just null it ! */

 /* it's long enough, and the checksum matches */
 if (i < 55) goto LOOP;
 for (j = 1; gpsinstr[j] != '*'; j++)
 checksum ^= gpsinstr[j];
 j++;
 incs = (gpsinstr[j] <= 57) ?
 (gpsinstr[j] - 48) * 16 :
 (gpsinstr[j] - 55) * 16;
 j++;
 incs += ((gpsinstr[j] >= 48) && (gpsinstr[j] <= 57)) ?
 gpsinstr[j] - 48 : gpsinstr[j] - 55;

 D(DBug12FNP->printf("\r\nCALC:%x READ:%x\r\n", checksum, incs);)
 if (checksum != incs) goto LOOP;

} // end LOOP code

 /* if you got here, it's good, means you got a string */

return i;

}

/*
 * at present, the only sentence we are using is GGA
 * $GPGGA,HHMMSS,####.####,(N,S),#####.####,(E,W),G,NT,
 HDOP,####.#,M,####.#,M,,*CS
 * OLD NOTE: .0001' = .58 feet at the equator
 * 4/16: .0001' = .6 AFAIK
 */

Type R Final Report

Page 50

void get_position ()
{

char *cur;
short commacount = 0, num_track = 0, i;

/* check for validity first */
for (*cur = '0'; *cur == '0';)
{
 get_gps_cmd (); /* gpsinstr is now valid */

/* just checking, assume it's good for now */

DBug12FNP->printf ("%s", gpsinstr);

/*
 * first order of business is to see if this data is valid.
 * if not, I dunno yet. We need some sort of poll loop and
 * a timeout if that takes too long, I guess. Tell ball/hole
 * to go into the search routine if we can't figure it out.
 *
 * 4/16: AS IS, we just sit around waiting for valid data.
 * not, they're just gonna hafta wait
 */

for (cur = &(gpsinstr[0]); commacount < 6; cur++)
if (*cur == ',') commacount++;

}

switch (*cur)
{
 // 0 can't happen now
 // case '0': DBug12FNP->printf("%s", "data no good\r\n"); break;

 case '1': // is data is good
 DBug12FNP->printf ("%s", "data good\r\n");
 break;

 case '2': // if data is good and has WAAS satelites
 DBug12FNP->printf ("%s", "data good with WAAS\r\n");
 break;
}

/*
 * Okay, the idea here is to count commas over to the data we want,
 * read those characters, subtract their ascii offset from 0, and
 * multiply by the appropriate power of ten. Now, was that so hard?
 */

/* start this section *** dunt touch *******************************/
/* get the number of satelites tracking, because I can */

cur++;
num_track = ((((*cur) - 0x30) * 10) + (*(cur + 1) - 0x30));
D (DBug12FNP->printf ("Sats tracked: %d\r\n", num_track);)

/* now that we know it's good, get the position */

for (cur = &(gpsinstr[0]), commacount = 0; commacount < 2; cur++)

Type R Final Report

Page 51

if (*cur == ',') commacount++;
bot.latdeg = ((*cur - 0x30) * 10) + (*(cur + 1) - 0x30);
bot.latmin = ((*(cur + 2) - 0x30) * 10) + (*(cur + 3) - 0x30);
bot.latdecmin = ((*(cur + 5) - 0x30) * 1000) +
 ((*(cur + 6) - 0x30) * 100) +
 ((*(cur + 7) - 0x30) * 10) +
 (*(cur + 8) - 0x30);
DBug12FNP->printf ("latdeg: %d latmin: %d latdecmin: %d\r\n",
 bot.latdeg, bot.latmin, bot.latdecmin);

/* next 2.4 is latmin's. wonder how we're going to do this */

for (; commacount < 4; cur++)
 if (*cur == ',') commacount++;
bot.longdeg = ((*cur - 0x30) * 100) +
 ((*(cur + 1) - 0x30) * 10) +
 ((*(cur + 2) - 0x30));
bot.longmin = ((*(cur + 3) - 0x30) * 10) + (*(cur + 4) - 0x30);
bot.longdecmin = ((*(cur + 6) - 0x30) * 1000) +
 ((*(cur + 7) - 0x30) * 100) +
 ((*(cur + 8) - 0x30) * 10) +
 (*(cur + 9) - 0x30);
DBug12FNP->printf ("longdeg: %d longmin: %d longdecmin: %d\r\n",

bot.longdeg, bot.longmin, bot.longdecmin);
} // end the function, we now have coords.

Type R Final Report

Page 52

Math Functions
bool gpsDist (void)
{

int Dist;
int flag = 0;
DifX=0;
DifY=0;

DifX = GPSxBOT - GPSxTAR;
DifY = GPSyBOT - GPSyTAR;

/**
MATH SECTION- Using Pythagorean theorem to find distance.
**/

if ((abs (DifX) + abs (DifY)) >= 180)
{

Dist = (long int) ((((DifX + 5) / 10) * ((DifX + 5) / 10)) +
 (((DifY + 5) / 10) * ((DifY + 5) / 10)));
 flag = 10;
}
else
{
 Dist = ((DifX * DifX) + (DifY * DifY));
 flag = 1;
}

/**
Square roots suck on HC12...here is a for loop to find them.
**/

for (guess = 0; Dist >= (guess * guess); guess++);
guess--;
guess = (guess * flag);
D (DBug12FNP->printf ("%d difference in long\n\r", DifX);)
D (DBug12FNP->printf ("%d difference in lat\n\r", DifY);)
D (DBug12FNP->printf ("%d is distances sqaured and added\n\r", Dist);)
DBug12FNP->printf ("%d is the Distance to travel\n\r", guess);
return (guess < 20) ? TRUE : FALSE;

}

/**
Function to find direction given latitude and longitude coordinates
**/
int gpsDir (void)
{

/**
Now me need a table for computing the angle. We don't have trig
functions, so we write a table with 90 values. This is for the 90
degrees in each quadrant. We will add code later to determine which
quadrant we are in.
**/

int tanTable[44] = { 102, 105, 109, 113, 117, 121, 125, 130, 135,
 140, 151, 157, 163, 169, 176, 184, 192, 200, 209, 219, 230, 242,
 254, 268, 282, 299, 316, 338, 361, 387, 417, 451, 492, 542, 600,
 670, 760, 880, 1045, 1285, 1665, 2380, 4295 };

Type R Final Report

Page 53

int angle = 0, angleNew = 0;
int YdivX=0;
int tableSlct = 0;

/**
Okey dokey...now do the math to find what value we are in the table.
This is our angle
**/

if (DifY == 0)
{ if (DifX > 0) angle = 90;
else angle = 270; }
else if (DifX == 0)
 {if (DifY > 0) angle = 0;
else angle = 180; }
else
{

if (abs (DifY) >= abs (DifX))
{

YdivX = (int) (abs (DifY * 100) / abs (DifX));
D (DBug12FNP-> printf ("%d is Y divided by X, angle > 45\n\r",
YdivX);)

 tableSlct = 1;
}
else
{

YdivX = (int) (abs (DifX * 100) / abs (DifY));
D (DBug12FNP-> printf ("%d is X divided by Y, angle < 45\n\r",

YdivX);)
 tableSlct = 2;

}
for (angle = 0; (tanTable[angle] < YdivX) && (angle < 45); angle++);

if (tableSlct == 1) angle += 45;
else if (tableSlct == 2) angle = 45 - angle;

}

D (DBug12FNP->printf ("%d is angle\n\r", angle);)

/**
What quadrant are we in?? Well....
**/

if ((DifX < 0) && (DifY > 0)) /* First quadrant */
{ angle = (270 - angle);
D(DBug12FNP->printf ("Q1: rotate %d degrees\n\r", angle);) }

if ((DifX < 0) && (DifY < 0)) /* Fourth quadrant */
{ angle = (270 + angle);
D(DBug12FNP->printf ("Q4: rotate %d degrees\n\r", angle);) }

if ((DifX > 0) && (DifY < 0)) /* Third quadrant */
{ angle = (angle);
D (DBug12FNP->printf ("Q3: rotate %d degrees\n\r", angle);) }

if ((DifX > 0) && (DifY > 0)) /* Second quadrant */
{ angle = (90 + angle);

Type R Final Report

Page 54

D (DBug12FNP->printf ("Q2: rotate %d degrees\n\r", angle);)}

Bug12FNP->printf ("%d is angle from north to travel\n\r", angle);

angleNew = (angle - robot_heading);
if (angleNew < 0) angleNew = (angleNew + 360);
DBug12FNP->printf ("%d is angle to rotate to!!\n\r", angleNew);
return angleNew;

}

Type R Final Report

Page 55

Compass

unsigned int robot_heading=0; // this is a global setup

void setup_compass (void)
{

DDRDLC = 0x0D; /* set up input on portDLC as described below */
PORTDLC = 0x0D;

/* **
Compass is set up with the following connections (this is the bare minimum):

PORTDLC set up (lines to Vector2x):
PDLC0 = !RESET -> OUTPUT high during power up, and normal operation
PDLC1 = EOC -> INPUT, goes low during calcs, high when calculations

 have completed
PDLC2 = !CAL -> OUTPUT high during power up
PDLC3 = !P/C -> OUTPUT high during power up, calibration and reset.

 low for polled data

Lines !XFLIP, !M/S, !RAW, !BCD/BIN are always high (+5V) and are tied
 to Vdd

Lines YFLIP, !RES are always low (0V) and are tied to GND (Vss)

SPI port setting for the compass interfacing
PS4 = SDO -> serial data output, PS4 is the HC12 serial

 data input (MISO)
PS6 = SCLK -> serial (SPI) clock
PS7 = !SS -> slave select, high during power up, low to select

 slave
** */

 DDRS = 0xE0; /* slave select, clock, MOSI outputs */
 PORTS = PORTS | 0x80; /* deselect compass, slave line = 1 */
 SP0CR1 = 0x5C; /* enable SPI and set as master */
 SP0CR2 = 0x00; /* normal mode, slave in */
 SP0BR = 0x07; /* set baud rate to 500kHz */

 TSCR = 0x80; /* enable timer subsystem */
 TMSK2 = 0x01; /* set timer overflow rate @ 16ms */
 TFLG2 = 0x80; /* clear timer overflow flag */

 delay_16msec (); /* need time to stabalize the lines */
 delay_16msec (); /* so run a small delay */
 delay_16msec ();

 PORTDLC = PORTDLC & ~0x01; /* reset goes low for 16ms */

 delay_16msec (); /* fix power problem from some lines

 being set before power on */
 PORTDLC = PORTDLC | 0x01; /* see compass manual for details

 On the process */

DBug12FNP->printf ("Compass is set up\n\r");
} // end the main function

Type R Final Report

Page 56

/******************CALIBRATE COMPASS FNCN************************* */

void calibrate_compass () /* calibrate the compass */
{

char finished = 0x00;

PORTDLC = PORTDLC & ~0x04; /* set !CAL low */
delay_16msec (); /* run a 16ms delay */
PORTDLC = PORTDLC | 0x04; /* set nCAL high */

/* we know need to send a command to chassis to rotate 180 degrees
 and zero distance. Required by the compass calibration
 procedure */

while(finished != x024)
{

send_data_chassis(0x24); // tell chassis we are sending a move
// command

 delay_16msec();
 send_data_chassis(0); // upper bits of angle are 0x00
 delay_16msec();
 send_data_chassis(180); // 0xb4 = 180 degrees
 delay_16msec();
 send_data_chassis(0x00); // distance is 0x00

while(!receiving_chassis); // wait for finished
// acknowledgement from chassis

 finished = recieve_data_chassis();
}

PORTDLC = PORTDLC & ~0x04; /* set nCAL low */
delay_16msec (); /* run a 16ms delay */
PORTDLC = PORTDLC | 0x04; /* set nCAL high */
delay_16msec (); /* run a 16ms delay */

/* inform user that compass is calibrated */

DBug12FNP->printf ("Vector2X is now calibrated \n\r");

} // end function

/*********************** GET HEADING *****************************/

void getheading () /* heading is 9 bits */
{

char i = 0, j = 0;
unsigned char heading1 = 0x00; /* heading info */
unsigned char heading2 = 0x00;

PORTDLC = PORTDLC & ~0x01; /* reset goes low for 16ms */
delay_16msec ();
PORTDLC = PORTDLC | 0x01; /* reset goes back high */
while (i < 40) /* delay at least 500msec */
{
 delay_16msec ();
 i++;

Type R Final Report

Page 57

}

robot_heading = 0x0000; /* set heading to zero degrees */

PORTDLC = PORTDLC & ~0x08; /* bring !P/C low bit 0 of PORTB */
delay_16msec (); /* !P/C stays low >= 10msec */
PORTDLC = PORTDLC | 0x08; /* bring !P/C high after 16msec */

/* wait for EOC to go high, compass has then completed calcs. */

while ((PORTDLC & 0x02) == 0x00);

/* delay at least 10msec before select compass slave line */

delay_16msec ();
PORTS = PORTS & ~0x80; /* select slave (compass) */

delay_16msec ();

/* get 1st 8 bits from compass, write garbage to SPO line */

SP0DR = 0x00;
while ((SP0SR & 0x80) == 0x00); /* wait for transfer */

heading1 = SP0DR; /* save in temp variable 1 */

SP0DR = 0x00; /* get 2nd 8 bits from compass */
while ((SP0SR & 0x80) == 0x00); /* wait for transfer */
heading2 = SP0DR; /* save in temp variable */

PORTS = PORTS | 0x80; /* deselect compass, slave line = 1 */

if (heading1 & 0x01) /* add 256 degrees if necessary */
{

robot_heading = heading2 + 256;
}
else /* last 8 bits of heading */
{

robot_heading = heading2;
}

DBug12FNP->printf ("%3u degrees\n\r", robot_heading);
send_data_comm (0x10);
for(j=0; j<10; j++)
{

delay_16msec();
}
send_data_comm ((char) (robot_heading >> 8));
for(j=0; j<10; j++)
{

delay_16msec();
}
send_data_comm ((char) (robot_heading));

} // end function

Type R Final Report

Page 58

Accelerometer
void get_corr () /* start accelerometer function */
{

int accel_cntr = 0; /* initialize counter variable */
int total = 40; /* take 40 readings for averaging */
unsigned char j = 0; /* initialize counter variable */

disable(); /* disable interrupts to avoid problems with compass */

TSCR = 0x80; /* turn on timer subsystem */
TIOS = TIOS & ~0x0A; /* TICs 1 and 3 are input capture */

TFLG1 = 0x0A; /* clear flags on TICs 1 and 3 */

for (accel_cntr = 0; accel_cntr < total; accel_cntr++)
{

TCTL4 = (TCTL4 | 0x44) & ~0x88; /* 01000100 - TICs 1 and 3 rising edge*/
while (!(TFLG1 & 0x02)); /* wait for channel 1 flag to be set*/
TFLG1 = 0x02; /* clear channel 1 flag */
while (!(TFLG1 & 0x0A)); /* wait for channel 3 flag to be set */
TFLG1 = 0x0A; /* clear channel 1 and 3 flags */

Xrise1 = TC1; /* read in channel 1 value */
Yrise1 = TC3; /* read in channel 3 value */

TCTL4 = (TCTL4 | 0x88) & ~0x44; /* 10001000 - TICs 1 and 3 falling edge*/
while (!(TFLG1 & 0x02)); /* wait for channel 1 flag to be set */
TFLG1 = 0x02; /* clear channel 1 flag */
while (!(TFLG1 & 0x0A)); /* wait for channel 3 flag to be set */
TFLG1 = 0x0A; /* clear channel 1 and 3 flags*/

Xfall = TC1; /* read in channel 1 value */
Yfall = TC3; /* read in channel 3 value */
TCTL4 = (TCTL4 | 0x44) & ~0x88; /* 01000100 - TICs 1 and 3 rising edge*/
while (!(TFLG1 & 0x02)); /* wait for channel 1 flag to be set */
TFLG1 = 0x02; /* clear channel 1 flag */
while (!(TFLG1 & 0x0A)); /* wait for channel 3 flag to be set*/
TFLG1 = 0x0A; /* clear channel 1 and 3 flags */

Xrise2 = TC1; /* read in channel 1 value */
Yrise2 = TC3; /* read in channel 3 value */

TFLG1 = 0x0A; /* clear channel 1 and 3 flags */

Xhigh = Xfall - Xrise1;
/* X high time = Falling Edge - 1st Rising Edge*/

Yhigh = Yfall - Yrise1;
/*Y high time = Falling Edge - 1st Rising Edge*/

Xtotal = Xrise2 - Xrise1;
/*X period = 2nd Rising Edge - 1st Rising Edge*/

Ytotal = Yrise2 - Yrise1;
/* Y period = 2nd Rising Edge - 1st Rising Edge*/

Type R Final Report

Page 59

/* X Duty Cycle * 1000 = X high / X period */
Xduty = ((long) Xhigh) * 1000 / ((long) Xtotal);

/* Y Duty Cycle * 1000 = Y high / Y period */
Yduty = ((long) Yhigh) * 1000 / ((long) Ytotal);

/* Acceleration formulas given in datasheet */
Accel_X += ((((long) Xduty - 477) * 10000) / 1250);
Accel_Y += ((((long) Yduty - 528) * 10000) / 1250);

} // end for loop

Accel_X /= total;
/* Divide Accel_X by number of readings to determine average */

Accel_Y /= total;
/* Divide Accel_Y by number of readings to determine average */

/***/
/* Compare acceleration values read to known acceleration values and
determine*/
/* the tilt angle */
/***/

if (Accel_X >= -20 && Accel_X >= 0)
 { Corr_X = -2; }
else if (Accel_X >= -45 && Accel_X < -20)
 { Corr_X = -4; }
else if (Accel_X >= -75 && Accel_X < -45)
 { Corr_X = -6; }
else if (Accel_X >= -120 && Accel_X < -75)
 { Corr_X = -8; }
else if (Accel_X >= -150 && Accel_X < -120)
 { Corr_X = -10; }
else if (Accel_X >= -175 && Accel_X < -150)
 { Corr_X = -12; }
else if (Accel_X >= -225 && Accel_X < -175)
 { Corr_X = -14; }
else if (Accel_X >= -255 && Accel_X < -225)
 { Corr_X = -16; }
else if (Accel_X >= -290 && Accel_X < -255)
 { Corr_X = -18; }
else if (Accel_X >= -315 && Accel_X < -290)
 { Corr_X = -20; }
else if (Accel_X >= -345 && Accel_X < -315)
 { Corr_X = -22; }
else if (Accel_X >= -370 && Accel_X < -345)
 { Corr_X = -24; }
else if (Accel_X >= -400 && Accel_X < -370)
 { Corr_X = -26; }
else if (Accel_X >= -430 && Accel_X < -400)
 { Corr_X = -28; }
else if (Accel_X < -430)
 { Corr_X = -30; }

if (Accel_X <= 30 && Accel_X >= 0)

Type R Final Report

Page 60

 { Corr_X = 0; }
else if (Accel_X <= 50 && Accel_X > 30)
 { Corr_X = 2; }
else if (Accel_X <= 90 && Accel_X > 50)
 { Corr_X = 4; }
else if (Accel_X <= 130 && Accel_X > 90)
 { Corr_X = 6; }
else if (Accel_X <= 160 && Accel_X > 130)
 { Corr_X = 8; }
else if (Accel_X <= 200 && Accel_X > 160)
 { Corr_X = 10; }
else if (Accel_X <= 230 && Accel_X > 200)
 { Corr_X = 12; }
else if (Accel_X <= 265 && Accel_X > 230)
 { Corr_X = 14; }
else if (Accel_X <= 300 && Accel_X > 265)
 { Corr_X = 16; }
else if (Accel_X <= 330 && Accel_X > 300)
 { Corr_X = 18; }
else if (Accel_X <= 360 && Accel_X > 330)
 { Corr_X = 20; }
else if (Accel_X <= 400 && Accel_X > 360)
 { Corr_X = 22; }
else if (Accel_X <= 440 && Accel_X > 400)
 { Corr_X = 24; }
else if (Accel_X <= 470 && Accel_X > 440)
 { Corr_X = 26; }
else if (Accel_X <= 500 && Accel_X > 470)
 { Corr_X = 28; }
else if (Accel_X > 500)
 { Corr_X = 30; }

if (Accel_Y >= -20 && Accel_Y >= 0)
 { Corr_Y = -2; }
else if (Accel_Y >= -45 && Accel_Y < -20)
 { Corr_Y = -4; }
else if (Accel_Y >= -75 && Accel_Y < -45)
 { Corr_Y = -6; }
else if (Accel_Y >= -120 && Accel_Y < -75)
 { Corr_Y = -8; }
else if (Accel_Y >= -150 && Accel_Y < -120)
 { Corr_Y = -10; }
else if (Accel_Y >= -175 && Accel_Y < -150)
 { Corr_Y = -12; }
else if (Accel_Y >= -225 && Accel_Y < -175)
 { Corr_Y = -14; }
else if (Accel_Y >= -255 && Accel_Y < -225)
 { Corr_Y = -16; }
else if (Accel_Y >= -290 && Accel_Y < -255)
 { Corr_Y = -18; }
else if (Accel_Y >= -315 && Accel_Y < -290)
 { Corr_Y = -20; }
else if (Accel_Y >= -345 && Accel_Y < -315)
 { Corr_Y = -22; }
else if (Accel_Y >= -370 && Accel_Y < -345)
 { Corr_Y = -24; }

Type R Final Report

Page 61

else if (Accel_Y >= -400 && Accel_Y < -370)
 { Corr_Y = -26; }
else if (Accel_Y >= -430 && Accel_Y < -400)
 { Corr_Y = -28; }
else if (Accel_Y < -430)
 { Corr_Y = -30; }

if (Accel_Y <= 30 && Accel_Y >= 0)
 { Corr_Y = 0; }
else if (Accel_Y <= 50 && Accel_Y > 30)
 { Corr_Y = 2; }
else if (Accel_Y <= 90 && Accel_Y > 50)
 { Corr_Y = 4; }
else if (Accel_Y <= 130 && Accel_Y > 90)
 { Corr_Y = 6; }
else if (Accel_Y <= 160 && Accel_Y > 130)
 { Corr_Y = 8; }
else if (Accel_Y <= 200 && Accel_Y > 160)
 { Corr_Y = 10; }
else if (Accel_Y <= 230 && Accel_Y > 200)
 { Corr_Y = 12; }
else if (Accel_Y <= 265 && Accel_Y > 230)
 { Corr_Y = 14; }
else if (Accel_Y <= 300 && Accel_Y > 265)
 { Corr_Y = 16; }
else if (Accel_Y <= 330 && Accel_Y > 300)
 { Corr_Y = 18; }
else if (Accel_Y <= 360 && Accel_Y > 330)
 { Corr_Y = 20; }
else if (Accel_Y <= 400 && Accel_Y > 360)
 { Corr_Y = 22; }
else if (Accel_Y <= 440 && Accel_Y > 400)
 { Corr_Y = 24; }
else if (Accel_Y <= 470 && Accel_Y > 440)
 { Corr_Y = 26; }
else if (Accel_Y <= 500 && Accel_Y > 470)
 { Corr_Y = 28; }
else if (Accel_Y > 500)
 { Corr_Y = 30; }

/***/
/* Use Corr_X and Corr_Y to correct heading error based experimentation */
/* Send corrected heading information to communications group */
/***/

robot_heading = robot_heading + 2*Corr_X;
robot_heading = robot_heading + 2*Corr_Y;

/* send corrected heading to comm. Group */

DBug12FNP->printf("Corrected Heading = %d \n\r", robot_heading);

send_data_comm (0x10); // ID byte to comm
for(j=0; j<10; j++)

{delay_16msec();}

/*Send upper byte of heading*/

Type R Final Report

Page 62

send_data_comm ((char) (robot_heading >> 8)); for(j=0; j<10; j++)
{delay_16msec(); }

/* Send lower byte of heading */
send_data_comm ((char) (robot_heading));

enable(); /* re-enable HC12 interrupts */

}

Type R Final Report

Page 63

Communications

// these are global setup variables

typedef enum { false, true } bool;

char RECEIVED = 0;
char DATA;

/* communication variables */
volatile bool sending_chassis = FALSE;
volatile bool sending_comm = FALSE;
volatile bool sending_ball_hole = FALSE;

volatile bool ready_chassis = FALSE;
volatile bool ready_comm = FALSE;
volatile bool ready_ball_hole = FALSE;

volatile bool receiving_chassis = FALSE;
volatile bool receiving_comm = FALSE;
volatile bool receiving_ball_hole = FALSE;

/*************** COMMUNICATIONS SETUP *******************************/
void comm_init ()
{

DDRP = 0xff; /* all bits of port P are output */
PORTP = 0x15; /* portP initially is 00010101 */

/* this deselects the slave and trigger (all handshake lines low */

TSCR = 0x80; /* enable timer subsystem */
TIOS = TIOS & ~0x02; /* 0,2,3,4,5,6,7 to input capture */
TCTL4 = (TCTL4 | 0x51) & 0x51;/* all capture the rising edge */
TCTL3 = (TCTL3 | 0x55) & 0x55;
TMSK1 = TMSK1 | ~0x02; /* 0,2,3,4,5,6,7 interrupts */
TMSK2 = 0x01; /* overflow rate at 16ms */

/* set up the SPI to communicate with the other subsystems */

DDRS = DDRS | 0xE0; /* ss, clk, MOSI outputs */
PORTS = PORTS | 0x80; /* deselct slave, for compass */

/* PORTP is !SS for other modules */
/* master device, MSB first, etc, idle high, valid on falling edge */

SP0CR1 = SP0CR1 | 0x5c;

/* this is set up to match the compass needs */

SP0CR2 = 0x00;

/* baud rate at 31.3kHz, also, this is
/* fastest the comm module can handle */

SP0BR = 0x07;

Type R Final Report

Page 64

DBug12FNP->printf("Finished Communications setup \n\r");

} // end function

/***/
/* Setup of the module communications are as follows: ****************/
/* */
/* BALL/HOLE: slave select: PORTP2 */
/* interrupt: TIMER4 */
/* handshake: PORTP3 */
/*---*/
/* CHASSIS: slave select: PORTP0 */
/* interrupt: TIMER4 */
/* handshake: PORTP1 */
/*---*/
/* COMMUNICATIONS: slave select: PORTP4 */
/* interrupt: TIMER6 */
/* handshake: not used for communications */
/***/

/***/
/* SEND TO ball/hole */
/***/

void send_data_ball_hole (DATA)
{

char garbage_received = 0x00;
sending_ball_hole = TRUE;

delay_16msec (); /* short delay to make sure evertone is ready */

PORTP = PORTP & ~0x14; /* slave select both ball/hole and comm */
SP0DR = DATA; /* send 8-bit (char) average */
while ((SP0SR & 0x80) == 0); /* wait for transfer */
garbage_received = SP0DR;
PORTP = PORTP | 0x14; /* this line slave deselects both the

ball/hole and comm channels */

DBug12FNP->printf("Sent %x \n\r", DATA);

ready_ball_hole = FALSE;
sending_ball_hole = FALSE;

}

/***/
/* RECEIVE FROM ball/hole */
/***/

char receive_data_ball_hole () /* receive from ball/hole module */
{

char RECEIVED = 0x00; /* initialize variables */

receiving_ball_hole = TRUE;
PORTP = PORTP & ~0x04; /* select slave line ports0 */
SP0DR = GARBAGE; /* send 8-bit (char) average */
while ((SP0SR & 0x80) == 0x00); /* wait for transfer */

Type R Final Report

Page 65

RECEIVED = SP0DR; /* save the received data */
PORTP = PORTP | 0x04; /* deselect SLAVE */

receiving_ball_hole = FALSE;

D(DBug12FNP->printf("Receiving \n\r");)

return RECEIVED; /* return the received data */

} // end function

/***/
/* SEND TO comm */
/***/

void send_data_comm (DATA)
{

char garbage_received = 0x00;
sending_comm = TRUE;

PORTP = PORTP & ~0x10; // slave select comm module
SP0DR = DATA; // load data into SPI
while ((SP0SR & 0x80) == 0); // wait for transfer to finish
garbage_received = SP0DR; // clear the SPI flag by reading garbage
PORTP = PORTP | 0x10; // deselect comm module

ready_comm = FALSE; // finished sending to comm, so clear the flags

to FALSE
sending_comm = FALSE;

}

/***/
/* RECEIVE FROM comm */
/***/

char receive_data_comm (void)
{

char RECEIVED = 0;

PORTP = PORTP & ~0x10; /* select comm module */
SP0DR = GARBAGE; /* send garbage to start Xfer */
while ((SP0SR & 0x80) == 0x00); /* wait for transfer to finish */
RECEIVED = SP0DR; /* store the received data */
PORTP = PORTP | 0x10; /* deselect comm module */

receiving_comm = FALSE; /* clear the flag */
return RECEIVED; /* return received data */

}

/***/
/* SEND TO chassis */
/***/

void send_data_chassis (DATA)
{

char garbage_received = 0x00;

Type R Final Report

Page 66

DBug12FNP->printf("in send_data_chassis\r\n");
sending_chassis = TRUE;

PORTP = PORTP | 0x02; /* set interrupt trigger line to chassis */
while (!ready_chassis); /* wait for the acknowledgement */
PORTP = PORTP & ~0x02; /* drop the handshake line */
DBug12FNP->printf("out of handshake\r\n");

delay_16msec ();

PORTP = PORTP & ~0x11; /* select both chassis and comm */

SP0DR = DATA; /* load data into SPI data register, and

start the transfer */
while ((SP0SR & 0x80) == 0); // wait for transfer to finish
garbage_received = SP0DR; // read the garbage to clear the SPI flag
PORTP = PORTP | 0x11; // deselect chassis and comm

ready_chassis = FALSE; // clear the transmission flags
sending_chassis = FALSE;

}

/***/
/* RECEIVE FROM chassis */
/***/

char receive_data_chassis (void)
{

char RECEIVED = 0;

PORTP = PORTP & ~0x01; // slave select the chassis module
SP0DR = GARBAGE; // send garbage to start Xfer
while ((SP0SR & 0x80) == 0x00); // wait for Xfer
RECEIVED = SP0DR; // store received data
PORTP = PORTP | 0x01; // deselect the slave device

receiving_chassis = FALSE; // clear the transmission flags
return RECEIVED;

}

/***/
/* INTERRUPT SERVICE ROUTINES */
/***/

@interrupt tic0_isr () /* dedicated STOP/PAUSE line from comm */
{

while ((PORTT & 0x01) == 0x00); // do nothing while line is high
TFLG1 = 0x01; // clear the flag

}

/* CHANNEL 2 INTERRUPT */
@interrupt tic2_isr (void)
{

if (sending_chassis) ready_chassis = TRUE; // set ready if sending
else receiving_chassis = TRUE; // we are receiving
TFLG1 = 0x04; // clear flag

}

Type R Final Report

Page 67

/* CHANNEL 4 INTERRUPT */
@interrupt tic4_isr (void)
{

if (sending_ball_hole) ready_ball_hole = TRUE; // set ready if sending
else receiving_ball_hole = TRUE; // we are receiving
TFLG1 = 0x10; // clear flag

}

/* CHANNEL 6 INTERRUPT */
@interrupt tic6_isr (void)
{

if (sending_comm) ready_comm = TRUE; // set ready if sending
else receiving_comm = TRUE; // we are receiving
TFLG1 = 0x40; // clear flag

}

/* nulls for safety... and sanity */
@interrupt tic7_isr () { TFLG1 = 0x80; }
@interrupt tic5_isr () { TFLG1 = 0x20; }
@interrupt tic3_isr () { TFLG1 = 0x08; }

Slave Code

/*
This is the code provided by the NAV A team for Robot A communications
between subsystems. This is slightly different from the version sent out
yesterday, in that is has comments so the you can easily follow the code, and
a small error has been fixed.

The port and timer channel setup in this file is extremely flexible. I set
it up this way on mine because I will likely be using these ports and
channels, but you can use anything you want, so long as the code is still
functional.

Thanks to Azmat from Ball/Hole for helping beat out some of the bugs.

Code is provided as is. No warranty expressed or implied. Void where
prohibited. Contact your representative for more information. Not valid in
Alaska, Hawaii, or Puerto Rico.

 - Ryan

*/

#include "hc12.h"
#include "DBug12.h"

#define TRUE 1
#define FALSE 0
#define GARBAGE 0x00 // define garbage value to send for some xfers

typedef enum {false,true} bool; // This line defines boolean variables

char DATA = 0x00; // initialize global data variable
char RECEIVED = 0x00;

Type R Final Report

Page 68

volatile bool receive = FALSE;
volatile bool sending = FALSE;
volatile bool finished = FALSE;

main()
{

DDRP = 0x40; // code is setup to use PORTP (PWM port) if you are
PORTP = 0x00; // using this port, just change this to another, such
 // as A, VB, ExpA., ExpB, A/D, whatever...

TSCR = 0x80; // enable timer system
TIOS = 0x00; // set up timer channel 2 and 3 to input capture
TCTL4 = 0x10; // channel 2 input capture rising
TMSK1 = 0x04; // enable channel 2 interrupts
TMSK2 = 0x01; // overflow rate at 16ms

// set up the SPI to communicate with the other subsystems

DDRS = DDRS | 0x10; // ss, clk, MOSI outputs, MISO is input
SP0CR1 = 0x4c; // slave, MSB first, etc.
SP0CR2 = 0x00;
// no baud rate register since master provides the clock

DATA = 0xAA; // initiaiize test data
enable();
DBug12FNP->printf("Waiting \n\r");

receive = FALSE;
while(TRUE) // infinite test loop to receive data
{
 receive = FALSE;
 while(!receive);
 receive_data();
 DBug12FNP->printf("received %u, %x \n\r", RECEIVED, RECEIVED);

}

}

//*****************************RECEIVE DATA ********************************
void receive_data(void)
{

SP0DR = 0xAA; // send back garbage
DBug12FNP->printf("Receiving \n\r");

PORTP = PORTP | 0x01; // raise the acknowledgement line

while ((SP0SR & 0x80) == 0); // wait for transfer to finish
RECEIVED = SP0DR; // read out the received data

PORTP = PORTP & ~0x01; // drop handshake

receive = FALSE; // done receiving

}

Type R Final Report

Page 69

//*******************************SEND DATA**********************************

void send_data(DATA)
{

 char crap_received;

DBug12FNP->printf("Sending %u \n\r", DATA);

SP0DR = DATA;

PORTP = PORTP | 0x01; // raise line to tell master we want to transfer

while ((SP0SR & 0x80) == 0); // wait for transfer
crap_received = SP0DR; // clear spi flag

PORTP = PORTP & ~0x01; // drop handshake line

}

//**
@interrupt tic2_isr(void) // the timer channel 2, Input Capture
{

DBug12FNP->printf("TIC2 ISR \n\r");

receive = TRUE;

TFLG1 = 0x04; // clear the channel 2 flag

}

//***
void delay_16msec(void) /* set up 16msec delay */
{

TFLG2 = 0x80; /* clear timer interrupt flag */

while(!(TFLG2 & 0x80)); /* wait for timer flag */
TFLG2 = 0x80; /* clear timer interrupt flag */

}

//***
void delay_3sec(void)
{

char i = 0; /* set counter to 0 */

TFLG2 = 0x80; /* clear timer overflow flag */

while(i < 188) /* wait for 118 16ms overflows */
{
 while(!(TFLG2 & 0x80)); /* wait for timer flag */
 TFLG2 = 0x80; /* clear timer interrupt flag */
 i++;
}

}

Type R Final Report

Page 70

Complete Program
#include "hc12.h"
#include "DBug12.h"
#include "uart.h"

/* I've seen where this matters to define thing this way */
#define FALSE 0
#define TRUE !FALSE /* define TRUE with value 1 */
#define GARBAGE 0x00 /* SPI default send value */

//#define ballhole /* ball hole stuff active */
//#define comm /* comm stuff active */
//#define chassis /* chassis stuff active */
//#define gpstest /* closed loop gps test */

/* to find: DC 4/4/02 */

//#define GPSxTAR 4572+40
//#define GPSyTAR 9084+640
//#define GPSxTAR 8135
//#define GPSyTAR 582
//#define GPSxTAR 4500
//#define GPSyTAR 9831

int GPSxTAR, GPSyTAR;
#define spin() move(0xff, 0) // spin define after dropping the ball

/* XXX */
//#define D(x) x // this defines some custom “comment” blocks
#define D(x)

unsigned int robot_heading=0; // initialize robot_heading globally

int DifX = 0, DifY = 0; // initialize difference globally
int guess = 0;

unsigned char gpsinstr[100];
struct position { short latdeg, latmin, latdecmin, longdeg, longmin,

longdecmin; };
struct position bot, target;

#define GPSxBOT bot.longdecmin
#define GPSyBOT bot.latdecmin

typedef enum { false, true } bool; // Boolean definitions
bool ball_close = FALSE;
bool hole_close = FALSE;

char RECEIVED = 0;
char DATA, DATA2, DATA3;

/* communication variables, described in comm. functions */
volatile bool sending_chassis = FALSE;
volatile bool sending_comm = FALSE;
volatile bool sending_ball_hole = FALSE;

Type R Final Report

Page 71

volatile bool ready_chassis = FALSE;
volatile bool ready_comm = FALSE;
volatile bool ready_ball_hole = FALSE;

volatile bool receiving_chassis = FALSE;
volatile bool receiving_comm = FALSE;
volatile bool receiving_ball_hole = FALSE;

/* flag to mark arrivial */
bool not_there;

/* accelerometer variables */
int Xrise1, Xrise2, Xfall, Xhigh, Xtotal, Xduty, Accel_X,
 Corr_X = 0, Yrise1, Yrise2, Yfall, Yhigh, Ytotal, Yduty, Accel_Y,
 Corr_Y = 0;

/* can I inline this? */
int abs (int x) { return (x > 0 ? x : -x); }

// *************** end global setup *********************

/* GPS thingy **/

void setupuart1 ()
{

DBug12FNP->printf ("uart setup \r\n");
S1SETUP1 = 0x00; // Figure out interrupts
while ((S1SETUP2 & 0xc0) != 0x00)
 S1SETUP2 |= 0x01; // turn on FIFOs
// S1SETUP2 &= ~0x01; // turn off FIFOs
S1SETUP4 = 0x00; // turn off some modem crap
S1SETUP3 = 0x03; // set parity and stop settings
S1SETUP3 |= 0x80; // enter set data rate mode
S1SETUP0 = 24; // set for 4800
S1SETUP1 = 0x00; // I dunno why, just ‘cause
S1SETUP2 = 0x00; // turn off other features
while ((S1SETUP3 & 0x80) == 0x80)
 S1SETUP3 &= ~0x80; // set r/w mode

D (DBug12FNP-> printf ("ch1: dlab %s\r\n",
 ((S1SETUP3 & 0x80) == 0x80) ? "set" : "reset");)
D (DBug12FNP-> printf ("ch1: fifos %s\r\n",
 ((S1SETUP2 & 0xf0) == 0xc0) ? "on" : "off");)
DBug12FNP->printf ("setup complete: entering read loop\r\n");

}

/*************** get one byte from the serial line ******************/

unsigned char get_gps_byte (short which)
{

volatile register char status = 0; // declare as volatile
if (which == 1)
{
 status = S1SETUP5;
 if (status & 0x08); //printf("FE\r\n");
 while ((status & 0x01) != 1)

Type R Final Report

Page 72

 { status = S1SETUP5; if (status & 0x08); }
 return (S1DATA & ~0x80);
}

/* deprecated */

else if (which == 2)
{ while ((S2SETUP5 & 0x01) != 1); return (S2DATA & ~0x80); }
else /* debugging */
{ _asm (" ldd #$0xdead"); _asm (" swi"); }

}

/* get an entire string from the durn GPS thing */
/* this handles the specifics of beginning and end */
/* now with checksums and a flavor the whole family can enjoy */

/*
 2 examples: this is the shortest a string should be
 $GPGGA,214722,3403.9876,N,10654.4448,W,0,00,,,M,,M,,*41
 $GPGGA,214724,3403.9876,N,10654.4448,W,0,00,,,M,,M,,*47
*/

short get_gps_cmd ()
{

short i, j;
char trash;

LOOP:
{
 char checksum = 0, incs = 0;
 for (i = 0; i < 100; i++) /* clear out this string */
 gpsinstr[i] = '\0';
 gpsinstr[0] = '$'; /* insert 2 characters that for some */
 gpsinstr[1] = 'G'; /* reason don't get there themselves */
 trash = S1DATA; /* clear the recd bit */

 /* wait for the head of a good string */

while (get_gps_byte (1) == '$');

/* read bytes from GPS until we see a newline: then we're ready to
check it */

 for (i = 2; (gpsinstr[i] = get_gps_byte (1)) != '\n'; i++);
 gpsinstr[++i] = '\0'; /* just null it ! */

 /* it's long enough, and the checksum matches */
 if (i < 55) goto LOOP;
 for (j = 1; gpsinstr[j] != '*'; j++)
 checksum ^= gpsinstr[j];
 j++;
 incs = (gpsinstr[j] <= 57) ?
 (gpsinstr[j] - 48) * 16 :
 (gpsinstr[j] - 55) * 16;
 j++;
 incs += ((gpsinstr[j] >= 48) && (gpsinstr[j] <= 57)) ?
 gpsinstr[j] - 48 : gpsinstr[j] - 55;

Type R Final Report

Page 73

 D(DBug12FNP->printf("\r\nCALC:%x READ:%x\r\n", checksum, incs);)
 if (checksum != incs) goto LOOP;

} // end LOOP code

 /* if you got here, it's good, means you got a string */

return i;

}

/*
 * at present, the only sentence we are using is GGA
 * $GPGGA,HHMMSS,####.####,(N,S),#####.####,(E,W),G,NT,
 HDOP,####.#,M,####.#,M,,*CS
 * OLD NOTE: .0001' = .58 feet at the equator
 * 4/16: .0001' = .6 AFAIK
 */

void get_position ()
{

char *cur;
short commacount = 0, num_track = 0, i;

/* check for validity first */
for (*cur = '0'; *cur == '0';)
{
 get_gps_cmd (); /* gpsinstr is now valid */

/* just checking, assume it's good for now */

DBug12FNP->printf ("%s", gpsinstr);

/*
 * first order of business is to see if this data is valid.
 * if not, I dunno yet. We need some sort of poll loop and
 * a timeout if that takes too long, I guess. Tell ball/hole
 * to go into the search routine if we can't figure it out.
 *
 * 4/16: AS IS, we just sit around waiting for valid data.
 * not, they're just gonna hafta wait
 */

for (cur = &(gpsinstr[0]); commacount < 6; cur++)
if (*cur == ',') commacount++;

}

switch (*cur)
{
 // 0 can't happen now
 // case '0': DBug12FNP->printf("%s", "data no good\r\n"); break;

 case '1': // is data is good
 DBug12FNP->printf ("%s", "data good\r\n");
 break;

 case '2': // if data is good and has WAAS satelites
 DBug12FNP->printf ("%s", "data good with WAAS\r\n");
 break;

Type R Final Report

Page 74

}

/*
 * Okay, the idea here is to count commas over to the data we want,
 * read those characters, subtract their ascii offset from 0, and
 * multiply by the appropriate power of ten. Now, was that so hard?
 */

/* start this section *** dunt touch *******************************/
/* get the number of satelites tracking, because I can */

cur++;
num_track = ((((*cur) - 0x30) * 10) + (*(cur + 1) - 0x30));
D (DBug12FNP->printf ("Sats tracked: %d\r\n", num_track);)

/* now that we know it's good, get the position */

for (cur = &(gpsinstr[0]), commacount = 0; commacount < 2; cur++)
if (*cur == ',') commacount++;
bot.latdeg = ((*cur - 0x30) * 10) + (*(cur + 1) - 0x30);
bot.latmin = ((*(cur + 2) - 0x30) * 10) + (*(cur + 3) - 0x30);
bot.latdecmin = ((*(cur + 5) - 0x30) * 1000) +
 ((*(cur + 6) - 0x30) * 100) +
 ((*(cur + 7) - 0x30) * 10) +
 (*(cur + 8) - 0x30);
DBug12FNP->printf ("latdeg: %d latmin: %d latdecmin: %d\r\n",
 bot.latdeg, bot.latmin, bot.latdecmin);

/* next 2.4 is latmin's. wonder how we're going to do this */

for (; commacount < 4; cur++)
 if (*cur == ',') commacount++;
bot.longdeg = ((*cur - 0x30) * 100) +
 ((*(cur + 1) - 0x30) * 10) +
 ((*(cur + 2) - 0x30));
bot.longmin = ((*(cur + 3) - 0x30) * 10) + (*(cur + 4) - 0x30);
bot.longdecmin = ((*(cur + 6) - 0x30) * 1000) +
 ((*(cur + 7) - 0x30) * 100) +
 ((*(cur + 8) - 0x30) * 10) +
 (*(cur + 9) - 0x30);
DBug12FNP->printf ("longdeg: %d longmin: %d longdecmin: %d\r\n",

bot.longdeg, bot.longmin, bot.longdecmin);
} // end the function, we now have coords.

/********************* MATH FUNCTIONS ***********************/
bool gpsDist (void)
{

int Dist;
int flag = 0;
DifX=0;
DifY=0;

DifX = GPSxBOT - GPSxTAR;
DifY = GPSyBOT - GPSyTAR;

Type R Final Report

Page 75

/**
MATH SECTION- Using Pythagorean theorem to find distance.
**/

if ((abs (DifX) + abs (DifY)) >= 180)
{

Dist = (long int) ((((DifX + 5) / 10) * ((DifX + 5) / 10)) +
 (((DifY + 5) / 10) * ((DifY + 5) / 10)));
 flag = 10;
}
else
{
 Dist = ((DifX * DifX) + (DifY * DifY));
 flag = 1;
}

/**
Square roots suck on HC12...here is a for loop to find them.
**/

for (guess = 0; Dist >= (guess * guess); guess++);
guess--;
guess = (guess * flag);
D (DBug12FNP->printf ("%d difference in long\n\r", DifX);)
D (DBug12FNP->printf ("%d difference in lat\n\r", DifY);)
D (DBug12FNP->printf ("%d is distances sqaured and added\n\r", Dist);)
DBug12FNP->printf ("%d is the Distance to travel\n\r", guess);
return (guess < 20) ? TRUE : FALSE;

}

/**
Function to find direction given latitude and longitude coordinates
**/
int gpsDir (void)
{

/**
Now me need a table for computing the angle. We don't have trig
functions, so we write a table with 90 values. This is for the 90
degrees in each quadrant. We will add code later to determine which
quadrant we are in.
**/

int tanTable[44] = { 102, 105, 109, 113, 117, 121, 125, 130, 135,
 140, 151, 157, 163, 169, 176, 184, 192, 200, 209, 219, 230, 242,
 254, 268, 282, 299, 316, 338, 361, 387, 417, 451, 492, 542, 600,
 670, 760, 880, 1045, 1285, 1665, 2380, 4295 };
int angle = 0, angleNew = 0;
int YdivX=0;
int tableSlct = 0;

/**
Okey dokey...now do the math to find what value we are in the table.
This is our angle
**/

if (DifY == 0)
{ if (DifX > 0) angle = 90;
else angle = 270; }

Type R Final Report

Page 76

else if (DifX == 0)
 {if (DifY > 0) angle = 0;
else angle = 180; }
else
{

if (abs (DifY) >= abs (DifX))
{

YdivX = (int) (abs (DifY * 100) / abs (DifX));
D (DBug12FNP-> printf ("%d is Y divided by X, angle > 45\n\r",
YdivX);)

 tableSlct = 1;
}
else
{

YdivX = (int) (abs (DifX * 100) / abs (DifY));
D (DBug12FNP-> printf ("%d is X divided by Y, angle < 45\n\r",

YdivX);)
 tableSlct = 2;

}
for (angle = 0; (tanTable[angle] < YdivX) && (angle < 45); angle++);

if (tableSlct == 1) angle += 45;
else if (tableSlct == 2) angle = 45 - angle;

}

D (DBug12FNP->printf ("%d is angle\n\r", angle);)

/**
What quadrant are we in?? Well....
**/

if ((DifX < 0) && (DifY > 0)) /* First quadrant */
{ angle = (270 - angle);
D(DBug12FNP->printf ("Q1: rotate %d degrees\n\r", angle);) }

if ((DifX < 0) && (DifY < 0)) /* Fourth quadrant */
{ angle = (270 + angle);
D(DBug12FNP->printf ("Q4: rotate %d degrees\n\r", angle);) }

if ((DifX > 0) && (DifY < 0)) /* Third quadrant */
{ angle = (angle);
D (DBug12FNP->printf ("Q3: rotate %d degrees\n\r", angle);) }

if ((DifX > 0) && (DifY > 0)) /* Second quadrant */
{ angle = (90 + angle);
D (DBug12FNP->printf ("Q2: rotate %d degrees\n\r", angle);)}

Bug12FNP->printf ("%d is angle from north to travel\n\r", angle);

angleNew = (angle - robot_heading);
if (angleNew < 0) angleNew = (angleNew + 360);
DBug12FNP->printf ("%d is angle to rotate to!!\n\r", angleNew);
return angleNew;

}
/***/
/************************** COMPASS FUNCTIONS ****************************/

Type R Final Report

Page 77

unsigned int robot_heading=0; // this is a global setup

void setup_compass (void)
{

DDRDLC = 0x0D; /* set up input on portDLC as described below */
PORTDLC = 0x0D;

/* **
Compass is set up with the following connections (this is the bare minimum):

PORTDLC set up (lines to Vector2x):
PDLC0 = !RESET -> OUTPUT high during power up, and normal operation
PDLC1 = EOC -> INPUT, goes low during calcs, high when calculations

 have completed
PDLC2 = !CAL -> OUTPUT high during power up
PDLC3 = !P/C -> OUTPUT high during power up, calibration and reset.

 low for polled data

Lines !XFLIP, !M/S, !RAW, !BCD/BIN are always high (+5V) and are tied
 to Vdd

Lines YFLIP, !RES are always low (0V) and are tied to GND (Vss)

SPI port setting for the compass interfacing
PS4 = SDO -> serial data output, PS4 is the HC12 serial

 data input (MISO)
PS6 = SCLK -> serial (SPI) clock
PS7 = !SS -> slave select, high during power up, low to select

 slave
** */

 DDRS = 0xE0; /* slave select, clock, MOSI outputs */
 PORTS = PORTS | 0x80; /* deselect compass, slave line = 1 */
 SP0CR1 = 0x5C; /* enable SPI and set as master */
 SP0CR2 = 0x00; /* normal mode, slave in */
 SP0BR = 0x07; /* set baud rate to 500kHz */

 TSCR = 0x80; /* enable timer subsystem */
 TMSK2 = 0x01; /* set timer overflow rate @ 16ms */
 TFLG2 = 0x80; /* clear timer overflow flag */

 delay_16msec (); /* need time to stabalize the lines */
 delay_16msec (); /* so run a small delay */
 delay_16msec ();

 PORTDLC = PORTDLC & ~0x01; /* reset goes low for 16ms */

 delay_16msec (); /* fix power problem from some lines

 being set before power on */
 PORTDLC = PORTDLC | 0x01; /* see compass manual for details

 On the process */

DBug12FNP->printf ("Compass is set up\n\r");
} // end the main function

/******************CALIBRATE COMPASS FNCN************************* */

Type R Final Report

Page 78

void calibrate_compass () /* calibrate the compass */
{

char finished = 0x00;

PORTDLC = PORTDLC & ~0x04; /* set !CAL low */
delay_16msec (); /* run a 16ms delay */
PORTDLC = PORTDLC | 0x04; /* set nCAL high */

/* we know need to send a command to chassis to rotate 180 degrees
 and zero distance. Required by the compass calibration
 procedure */

while(finished != x024)
{

send_data_chassis(0x24); // tell chassis we are sending a move
// command

 delay_16msec();
 send_data_chassis(0); // upper bits of angle are 0x00
 delay_16msec();
 send_data_chassis(180); // 0xb4 = 180 degrees
 delay_16msec();
 send_data_chassis(0x00); // distance is 0x00

while(!receiving_chassis); // wait for finished
// acknowledgement from chassis

 finished = recieve_data_chassis();
}

PORTDLC = PORTDLC & ~0x04; /* set nCAL low */
delay_16msec (); /* run a 16ms delay */
PORTDLC = PORTDLC | 0x04; /* set nCAL high */
delay_16msec (); /* run a 16ms delay */

/* inform user that compass is calibrated */

DBug12FNP->printf ("Vector2X is now calibrated \n\r");

} // end function

/*********************** GET HEADING *****************************/

void getheading () /* heading is 9 bits */
{

char i = 0, j = 0;
unsigned char heading1 = 0x00; /* heading info */
unsigned char heading2 = 0x00;

PORTDLC = PORTDLC & ~0x01; /* reset goes low for 16ms */
delay_16msec ();
PORTDLC = PORTDLC | 0x01; /* reset goes back high */
while (i < 40) /* delay at least 500msec */
{
 delay_16msec ();
 i++;
}

robot_heading = 0x0000; /* set heading to zero degrees */

Type R Final Report

Page 79

PORTDLC = PORTDLC & ~0x08; /* bring !P/C low bit 0 of PORTB */
delay_16msec (); /* !P/C stays low >= 10msec */
PORTDLC = PORTDLC | 0x08; /* bring !P/C high after 16msec */

/* wait for EOC to go high, compass has then completed calcs. */

while ((PORTDLC & 0x02) == 0x00);

/* delay at least 10msec before select compass slave line */

delay_16msec ();
PORTS = PORTS & ~0x80; /* select slave (compass) */

delay_16msec ();

/* get 1st 8 bits from compass, write garbage to SPO line */

SP0DR = 0x00;
while ((SP0SR & 0x80) == 0x00); /* wait for transfer */

heading1 = SP0DR; /* save in temp variable 1 */

SP0DR = 0x00; /* get 2nd 8 bits from compass */
while ((SP0SR & 0x80) == 0x00); /* wait for transfer */
heading2 = SP0DR; /* save in temp variable */

PORTS = PORTS | 0x80; /* deselect compass, slave line = 1 */

if (heading1 & 0x01) /* add 256 degrees if necessary */
{

robot_heading = heading2 + 256;
}
else /* last 8 bits of heading */
{

robot_heading = heading2;
}

DBug12FNP->printf ("%3u degrees\n\r", robot_heading);
send_data_comm (0x10);
for(j=0; j<10; j++)
{

delay_16msec();
}
send_data_comm ((char) (robot_heading >> 8));
for(j=0; j<10; j++)
{

delay_16msec();
}
send_data_comm ((char) (robot_heading));

} // end function

/***/
/************************** ACCELEROMETER FUNCTIONS **********************/

Type R Final Report

Page 80

void get_corr () /* start accelerometer function */
{

int accel_cntr = 0; /* initialize counter variable */
int total = 40; /* take 40 readings for averaging */
unsigned char j = 0; /* initialize counter variable */

disable(); /* disable interrupts to avoid problems with compass */

TSCR = 0x80; /* turn on timer subsystem */
TIOS = TIOS & ~0x0A; /* TICs 1 and 3 are input capture */

TFLG1 = 0x0A; /* clear flags on TICs 1 and 3 */

for (accel_cntr = 0; accel_cntr < total; accel_cntr++)
{

TCTL4 = (TCTL4 | 0x44) & ~0x88; /* 01000100 - TICs 1 and 3 rising edge*/
while (!(TFLG1 & 0x02)); /* wait for channel 1 flag to be set*/
TFLG1 = 0x02; /* clear channel 1 flag */
while (!(TFLG1 & 0x0A)); /* wait for channel 3 flag to be set */
TFLG1 = 0x0A; /* clear channel 1 and 3 flags */

Xrise1 = TC1; /* read in channel 1 value */
Yrise1 = TC3; /* read in channel 3 value */

TCTL4 = (TCTL4 | 0x88) & ~0x44; /* 10001000 - TICs 1 and 3 falling edge*/
while (!(TFLG1 & 0x02)); /* wait for channel 1 flag to be set */
TFLG1 = 0x02; /* clear channel 1 flag */
while (!(TFLG1 & 0x0A)); /* wait for channel 3 flag to be set */
TFLG1 = 0x0A; /* clear channel 1 and 3 flags*/

Xfall = TC1; /* read in channel 1 value */
Yfall = TC3; /* read in channel 3 value */
TCTL4 = (TCTL4 | 0x44) & ~0x88; /* 01000100 - TICs 1 and 3 rising edge*/
while (!(TFLG1 & 0x02)); /* wait for channel 1 flag to be set */
TFLG1 = 0x02; /* clear channel 1 flag */
while (!(TFLG1 & 0x0A)); /* wait for channel 3 flag to be set*/
TFLG1 = 0x0A; /* clear channel 1 and 3 flags */

Xrise2 = TC1; /* read in channel 1 value */
Yrise2 = TC3; /* read in channel 3 value */

TFLG1 = 0x0A; /* clear channel 1 and 3 flags */

Xhigh = Xfall - Xrise1;
/* X high time = Falling Edge - 1st Rising Edge*/

Yhigh = Yfall - Yrise1;
/*Y high time = Falling Edge - 1st Rising Edge*/

Xtotal = Xrise2 - Xrise1;
/*X period = 2nd Rising Edge - 1st Rising Edge*/

Ytotal = Yrise2 - Yrise1;
/* Y period = 2nd Rising Edge - 1st Rising Edge*/

Type R Final Report

Page 81

/* X Duty Cycle * 1000 = X high / X period */
Xduty = ((long) Xhigh) * 1000 / ((long) Xtotal);

/* Y Duty Cycle * 1000 = Y high / Y period */
Yduty = ((long) Yhigh) * 1000 / ((long) Ytotal);

/* Acceleration formulas given in datasheet */
Accel_X += ((((long) Xduty - 477) * 10000) / 1250);
Accel_Y += ((((long) Yduty - 528) * 10000) / 1250);

} // end for loop

Accel_X /= total;
/* Divide Accel_X by number of readings to determine average */

Accel_Y /= total;
/* Divide Accel_Y by number of readings to determine average */

/***/
/* Compare acceleration values read to known acceleration values and
determine*/
/* the tilt angle */
/***/

if (Accel_X >= -20 && Accel_X >= 0)
 { Corr_X = -2; }
else if (Accel_X >= -45 && Accel_X < -20)
 { Corr_X = -4; }
else if (Accel_X >= -75 && Accel_X < -45)
 { Corr_X = -6; }
else if (Accel_X >= -120 && Accel_X < -75)
 { Corr_X = -8; }
else if (Accel_X >= -150 && Accel_X < -120)
 { Corr_X = -10; }
else if (Accel_X >= -175 && Accel_X < -150)
 { Corr_X = -12; }
else if (Accel_X >= -225 && Accel_X < -175)
 { Corr_X = -14; }
else if (Accel_X >= -255 && Accel_X < -225)
 { Corr_X = -16; }
else if (Accel_X >= -290 && Accel_X < -255)
 { Corr_X = -18; }
else if (Accel_X >= -315 && Accel_X < -290)
 { Corr_X = -20; }
else if (Accel_X >= -345 && Accel_X < -315)
 { Corr_X = -22; }
else if (Accel_X >= -370 && Accel_X < -345)
 { Corr_X = -24; }
else if (Accel_X >= -400 && Accel_X < -370)
 { Corr_X = -26; }
else if (Accel_X >= -430 && Accel_X < -400)
 { Corr_X = -28; }
else if (Accel_X < -430)
 { Corr_X = -30; }

if (Accel_X <= 30 && Accel_X >= 0)
 { Corr_X = 0; }

Type R Final Report

Page 82

else if (Accel_X <= 50 && Accel_X > 30)
 { Corr_X = 2; }
else if (Accel_X <= 90 && Accel_X > 50)
 { Corr_X = 4; }
else if (Accel_X <= 130 && Accel_X > 90)
 { Corr_X = 6; }
else if (Accel_X <= 160 && Accel_X > 130)
 { Corr_X = 8; }
else if (Accel_X <= 200 && Accel_X > 160)
 { Corr_X = 10; }
else if (Accel_X <= 230 && Accel_X > 200)
 { Corr_X = 12; }
else if (Accel_X <= 265 && Accel_X > 230)
 { Corr_X = 14; }
else if (Accel_X <= 300 && Accel_X > 265)
 { Corr_X = 16; }
else if (Accel_X <= 330 && Accel_X > 300)
 { Corr_X = 18; }
else if (Accel_X <= 360 && Accel_X > 330)
 { Corr_X = 20; }
else if (Accel_X <= 400 && Accel_X > 360)
 { Corr_X = 22; }
else if (Accel_X <= 440 && Accel_X > 400)
 { Corr_X = 24; }
else if (Accel_X <= 470 && Accel_X > 440)
 { Corr_X = 26; }
else if (Accel_X <= 500 && Accel_X > 470)
 { Corr_X = 28; }
else if (Accel_X > 500)
 { Corr_X = 30; }

if (Accel_Y >= -20 && Accel_Y >= 0)
 { Corr_Y = -2; }
else if (Accel_Y >= -45 && Accel_Y < -20)
 { Corr_Y = -4; }
else if (Accel_Y >= -75 && Accel_Y < -45)
 { Corr_Y = -6; }
else if (Accel_Y >= -120 && Accel_Y < -75)
 { Corr_Y = -8; }
else if (Accel_Y >= -150 && Accel_Y < -120)
 { Corr_Y = -10; }
else if (Accel_Y >= -175 && Accel_Y < -150)
 { Corr_Y = -12; }
else if (Accel_Y >= -225 && Accel_Y < -175)
 { Corr_Y = -14; }
else if (Accel_Y >= -255 && Accel_Y < -225)
 { Corr_Y = -16; }
else if (Accel_Y >= -290 && Accel_Y < -255)
 { Corr_Y = -18; }
else if (Accel_Y >= -315 && Accel_Y < -290)
 { Corr_Y = -20; }
else if (Accel_Y >= -345 && Accel_Y < -315)
 { Corr_Y = -22; }
else if (Accel_Y >= -370 && Accel_Y < -345)
 { Corr_Y = -24; }
else if (Accel_Y >= -400 && Accel_Y < -370)

Type R Final Report

Page 83

 { Corr_Y = -26; }
else if (Accel_Y >= -430 && Accel_Y < -400)
 { Corr_Y = -28; }
else if (Accel_Y < -430)
 { Corr_Y = -30; }

if (Accel_Y <= 30 && Accel_Y >= 0)
 { Corr_Y = 0; }
else if (Accel_Y <= 50 && Accel_Y > 30)
 { Corr_Y = 2; }
else if (Accel_Y <= 90 && Accel_Y > 50)
 { Corr_Y = 4; }
else if (Accel_Y <= 130 && Accel_Y > 90)
 { Corr_Y = 6; }
else if (Accel_Y <= 160 && Accel_Y > 130)
 { Corr_Y = 8; }
else if (Accel_Y <= 200 && Accel_Y > 160)
 { Corr_Y = 10; }
else if (Accel_Y <= 230 && Accel_Y > 200)
 { Corr_Y = 12; }
else if (Accel_Y <= 265 && Accel_Y > 230)
 { Corr_Y = 14; }
else if (Accel_Y <= 300 && Accel_Y > 265)
 { Corr_Y = 16; }
else if (Accel_Y <= 330 && Accel_Y > 300)
 { Corr_Y = 18; }
else if (Accel_Y <= 360 && Accel_Y > 330)
 { Corr_Y = 20; }
else if (Accel_Y <= 400 && Accel_Y > 360)
 { Corr_Y = 22; }
else if (Accel_Y <= 440 && Accel_Y > 400)
 { Corr_Y = 24; }
else if (Accel_Y <= 470 && Accel_Y > 440)
 { Corr_Y = 26; }
else if (Accel_Y <= 500 && Accel_Y > 470)
 { Corr_Y = 28; }
else if (Accel_Y > 500)
 { Corr_Y = 30; }

/***/
/* Use Corr_X and Corr_Y to correct heading error based experimentation */
/* Send corrected heading information to communications group */
/***/

robot_heading = robot_heading + 2*Corr_X;
robot_heading = robot_heading + 2*Corr_Y;

/* send corrected heading to comm. Group */

DBug12FNP->printf("Corrected Heading = %d \n\r", robot_heading);

send_data_comm (0x10); // ID byte to comm
for(j=0; j<10; j++)

{delay_16msec();}

/*Send upper byte of heading*/
send_data_comm ((char) (robot_heading >> 8)); for(j=0; j<10; j++)

Type R Final Report

Page 84

{delay_16msec(); }

/* Send lower byte of heading */
send_data_comm ((char) (robot_heading));

enable(); /* re-enable HC12 interrupts */

}

/***/
/************************** COMMUNICAITION FUNCTIONS *********************/

/*************** COMMUNICATIONS SETUP *******************************/
void comm_init ()
{

DDRP = 0xff; /* all bits of port P are output */
PORTP = 0x15; /* portP initially is 00010101 */

/* this deselects the slave and trigger (all handshake lines low */

TSCR = 0x80; /* enable timer subsystem */
TIOS = TIOS & ~0x02; /* 0,2,3,4,5,6,7 to input capture */
TCTL4 = (TCTL4 | 0x51) & 0x51;/* all capture the rising edge */
TCTL3 = (TCTL3 | 0x55) & 0x55;
TMSK1 = TMSK1 | ~0x02; /* 0,2,3,4,5,6,7 interrupts */
TMSK2 = 0x01; /* overflow rate at 16ms */

/* set up the SPI to communicate with the other subsystems */

DDRS = DDRS | 0xE0; /* ss, clk, MOSI outputs */
PORTS = PORTS | 0x80; /* deselct slave, for compass */

/* PORTP is !SS for other modules */
/* master device, MSB first, etc, idle high, valid on falling edge */

SP0CR1 = SP0CR1 | 0x5c;

/* this is set up to match the compass needs */

SP0CR2 = 0x00;

/* baud rate at 31.3kHz, also, this is
/* fastest the comm module can handle */

SP0BR = 0x07;

DBug12FNP->printf("Finished Communications setup \n\r");

} // end function

/***/
/* Setup of the module communications are as follows: ****************/
/* */
/* BALL/HOLE: slave select: PORTP2 */
/* interrupt: TIMER4 */

Type R Final Report

Page 85

/* handshake: PORTP3 */
/*---*/
/* CHASSIS: slave select: PORTP0 */
/* interrupt: TIMER4 */
/* handshake: PORTP1 */
/*---*/
/* COMMUNICATIONS: slave select: PORTP4 */
/* interrupt: TIMER6 */
/* handshake: not used for communications */
/***/

/***/
/* SEND TO ball/hole */
/***/

void send_data_ball_hole (DATA)
{

char garbage_received = 0x00;
sending_ball_hole = TRUE;

delay_16msec (); /* short delay to make sure evertone is ready */

PORTP = PORTP & ~0x14; /* slave select both ball/hole and comm */
SP0DR = DATA; /* send 8-bit (char) average */
while ((SP0SR & 0x80) == 0); /* wait for transfer */
garbage_received = SP0DR;
PORTP = PORTP | 0x14; /* this line slave deselects both the

ball/hole and comm channels */

DBug12FNP->printf("Sent %x \n\r", DATA);

ready_ball_hole = FALSE;
sending_ball_hole = FALSE;

}

/***/
/* RECEIVE FROM ball/hole */
/***/

char receive_data_ball_hole () /* receive from ball/hole module */
{

char RECEIVED = 0x00; /* initialize variables */

receiving_ball_hole = TRUE;
PORTP = PORTP & ~0x04; /* select slave line ports0 */
SP0DR = GARBAGE; /* send 8-bit (char) average */
while ((SP0SR & 0x80) == 0x00); /* wait for transfer */
RECEIVED = SP0DR; /* save the received data */
PORTP = PORTP | 0x04; /* deselect SLAVE */

receiving_ball_hole = FALSE;

D(DBug12FNP->printf("Receiving \n\r");)

return RECEIVED; /* return the received data */

} // end function

Type R Final Report

Page 86

/***/
/* SEND TO comm */
/***/

void send_data_comm (DATA)
{

char garbage_received = 0x00;
sending_comm = TRUE;

PORTP = PORTP & ~0x10; // slave select comm module
SP0DR = DATA; // load data into SPI
while ((SP0SR & 0x80) == 0); // wait for transfer to finish
garbage_received = SP0DR; // clear the SPI flag by reading garbage
PORTP = PORTP | 0x10; // deselect comm module

ready_comm = FALSE; // finished sending to comm, so clear the flags

to FALSE
sending_comm = FALSE;

}

/***/
/* RECEIVE FROM comm */
/***/

char receive_data_comm (void)
{

char RECEIVED = 0;

PORTP = PORTP & ~0x10; /* select comm module */
SP0DR = GARBAGE; /* send garbage to start Xfer */
while ((SP0SR & 0x80) == 0x00); /* wait for transfer to finish */
RECEIVED = SP0DR; /* store the received data */
PORTP = PORTP | 0x10; /* deselect comm module */

receiving_comm = FALSE; /* clear the flag */
return RECEIVED; /* return received data */

}

/***/
/* SEND TO chassis */
/***/

void send_data_chassis (DATA)
{

char garbage_received = 0x00;

DBug12FNP->printf("in send_data_chassis\r\n");
sending_chassis = TRUE;

PORTP = PORTP | 0x02; /* set interrupt trigger line to chassis */
while (!ready_chassis); /* wait for the acknowledgement */
PORTP = PORTP & ~0x02; /* drop the handshake line */
DBug12FNP->printf("out of handshake\r\n");

delay_16msec ();

Type R Final Report

Page 87

PORTP = PORTP & ~0x11; /* select both chassis and comm */

SP0DR = DATA; /* load data into SPI data register, and

start the transfer */
while ((SP0SR & 0x80) == 0); // wait for transfer to finish
garbage_received = SP0DR; // read the garbage to clear the SPI flag
PORTP = PORTP | 0x11; // deselect chassis and comm

ready_chassis = FALSE; // clear the transmission flags
sending_chassis = FALSE;

}

/***/
/* RECEIVE FROM chassis */
/***/

char receive_data_chassis (void)
{

char RECEIVED = 0;

PORTP = PORTP & ~0x01; // slave select the chassis module
SP0DR = GARBAGE; // send garbage to start Xfer
while ((SP0SR & 0x80) == 0x00); // wait for Xfer
RECEIVED = SP0DR; // store received data
PORTP = PORTP | 0x01; // deselect the slave device

receiving_chassis = FALSE; // clear the transmission flags
return RECEIVED;

}

/***/
/* INTERRUPT SERVICE ROUTINES */
/***/

@interrupt tic0_isr () /* dedicated STOP/PAUSE line from comm */
{

while ((PORTT & 0x01) == 0x00); // do nothing while line is high
TFLG1 = 0x01; // clear the flag

}

/* CHANNEL 2 INTERRUPT */
@interrupt tic2_isr (void)
{

if (sending_chassis) ready_chassis = TRUE; // set ready if sending
else receiving_chassis = TRUE; // we are receiving
TFLG1 = 0x04; // clear flag

}

/* CHANNEL 4 INTERRUPT */
@interrupt tic4_isr (void)
{

if (sending_ball_hole) ready_ball_hole = TRUE; // set ready if sending
else receiving_ball_hole = TRUE; // we are receiving
TFLG1 = 0x10; // clear flag

}

/* CHANNEL 6 INTERRUPT */

Type R Final Report

Page 88

@interrupt tic6_isr (void)
{

if (sending_comm) ready_comm = TRUE; // set ready if sending
else receiving_comm = TRUE; // we are receiving
TFLG1 = 0x40; // clear flag

}

/* nulls for safety... and sanity */
@interrupt tic7_isr () { TFLG1 = 0x80; }
@interrupt tic5_isr () { TFLG1 = 0x20; }
@interrupt tic3_isr () { TFLG1 = 0x08; }

/***/
/* FIND BALL FNCN */
/***FS******************/

void find_ball ()
{

DBug12FNP->printf("in ball\r\n");
enable ();
send_data_ball_hole (0x21);
RECEIVED = GARBAGE;
while (RECEIVED != 0xff)
{
 if (receiving_ball_hole)
 {
 RECEIVED = receive_data_ball_hole ();
 DBug12FNP->printf ("Received %x from B/H\n\r", RECEIVED);
 send_data_chassis (0x21);
 send_data_chassis (RECEIVED);
 DBug12FNP->printf ("Sent %x to chassis\n\r", RECEIVED);
 }
}

disable (); // disable the HC12 interrupts

DBug12FNP->printf("exit ball\r\n");

} // end find ball function

/***/
/* FIND HOLE FUNCTION */
/***/

void find_hole ()
{

DBug12FNP->printf("in find_hole\r\n");
enable ();
send_data_ball_hole (0x20);
RECEIVED = GARBAGE;
while (RECEIVED != 0xff)
{
 if (receiving_ball_hole)
 {
 RECEIVED = receive_data_ball_hole ();
 DBug12FNP->printf ("Received %x from B/H \n\r", RECEIVED);

Type R Final Report

Page 89

 send_data_chassis (0x20);
 send_data_chassis (RECEIVED);
 DBug12FNP->printf ("Sent %x to chassis\n\r", RECEIVED);
 }
}

disable ();

DBug12FNP->printf("out of find_hole\r\n");

} // end find hole function

/***/
/* MOVE FUNCTION */
/***/

/* chassis comm wrapper: ident:angle:angle:dist */

void move (int angle, int distance)
{

enable(); // enable interrupts
not_there = TRUE; // set that we are not there
send_data_chassis(0x24); delay_16msec(); // send ID byte
send_data_chassis((char)(angle>>8)); delay_16msec(); // upper of angle
send_data_chassis((char)(angle)); delay_16msec(); // lower of angle
send_data_chassis((char)distance); // send distance
while(!receiving_chassis); // wait for confirming transmission
RECEIVED = receive_data_chassis();
DBug12FNP->printf("got: 0x%x\r\n", RECEIVED);

while(not_there) // do this loop while not at ball/hole
{
 get_position(); // GPS postion and compass heading
 send_data_chassis(/* stuff for movements (GPSDir, GPSDist) */);
 delay_3sec(); // delay before repeating
}
not_there = FALSE;

} // end move function

/********** GENERIC DELAY FOR 3 SEC AND 16MSEC ***********************/

void delay_3sec ()
{

char i = 0; /* set counter to 0 */
TFLG2 = 0x80; /* clear timer overflow flag */
while (i < 188) /* wait for 118 16ms overflows */
{
 while (!(TFLG2 & 0x80)); /* wait for timer flag */
 TFLG2 = 0x80; /* clear timer interrupt flag */
 i++;
}

}

void delay_16msec () /* set up delay for calibration */
{

Type R Final Report

Page 90

TFLG2 = 0x80; /* clear timer interrupt flag */
TSCR = 0x80;
while (!(TFLG2 & 0x80)); /* wait for timer flag */
TFLG2 = 0x80; /* clear timer interrupt flag */

}

/***/
/* MAIN */
/***/

void main (void)
{

int holex, holey; // target for the hole coords

/* setup all the components ****************************** */

setupuart1 (); // setup the UART
setup_compass (); // setup the compass
comm_init (); // setup the communications protocols
calibrate_compass(); // run the calibrate compass function

#ifdef gpstest // run this if conducting a GPS test

for(;;) {get_position(); getheading(); get_corr(); gpsDir(); gpsDist();
delay_3sec();}

#endif

/* end setup calls*** */

/* receive coordinates and start command ************************ */

enable();

send_data_comm(0x55);
DBug12FNP->printf ("Sent a 0x55 to comm, waiting to receive \n\r");

while(!receiving_comm); // must wait for comm to send the flag high
 // (set in TIC4 ISR)
GPSxTAR = receive_data_comm() << 8;
// receive and 8-bit transfer, upper bit set is shifted by 8 to the left

while(!receiving_comm);
// wait cycle for comm. flag must be between each transfer for timing

GPSxTAR += receive_data_comm ();
DBug12FNP->printf (" %x \n\r", GPSxTAR);

while(!receiving_comm);
GPSyTAR = receive_data_comm () << 8;

while(!receiving_comm);
GPSyTAR += receive_data_comm ();
DBug12FNP->printf (" %x \n\r", GPSyTAR);

while(!receiving_comm);
holex = receive_data_comm () << 8;

while(!receiving_comm);

Type R Final Report

Page 91

holex += receive_data_comm ();
DBug12FNP->printf (" %x \n\r", holex);

while(!receiving_comm);
holey = receive_data_comm () << 8;

while(!receiving_comm);
holey += receive_data_comm ();
DBug12FNP->printf (" %x \n\r", holey);

DBug12FNP->printf ("Ball Tar-get: x:%d y:%d \r\nHole Tar-get: x:%d

y:%d\r\n", GPSxTAR, GPSyTAR, holex, holey);
DBug12FNP->printf ("Finished receiving the coords from comm \n\r");

/* this code setup uses the transmission of coords as a start command from
comm. */

disable(); // disable HC12 interrupts

delay_3sec();} // run a delay before starting cycles

ball_close = false;
delay_3sec(); //delay_3sec(); // 6 sec delay in program

while (!ball_close)
{
 get_position (); /* these 2 take a while */
 getheading ();
 ball_close = gpsDist ();

delay_3sec();

 if (!ball_close)
 {
 int temp = gpsDir ();
 if (guess < 60)
 move (temp, guess); // walk this way!
 else
 move (temp, guess / 2); // walk this way!
 }

}

DBug12FNP->printf("we're close\r\n");

find_ball (); // call this function to find the ball

DBug12FNP->printf("out of find_ball: delay before starting !hole close

routine... \n\r");

delay_3sec();

GPSxTAR = holex; // change target to find hole now
GPSyTAR = holey;

hole_close = false;
while (!hole_close)
{

Type R Final Report

Page 92

 get_position ();
 getheading ();
 hole_close = gpsDist ();
 if (!hole_close)
 {

int temp = gpsDir ();
 if (guess < 60)
 move (temp, guess); /* walk this way! */
 else
 move (temp, guess / 2); /* walk this way! */
 }
}

DBug12FNP->printf("we're close\r\n");

find_hole (); // call this function when we are finding the hol

DBug12FNP->printf("We're done!!\r\n");
_asm("swi");

}

Type R Final Report

Page 93

Appendix C: Altera Code

This appendix contains the Altera code used for the memory expansion board and the added

UART chip. Also included is the Altera pin-out form the report file

Type R Final Report

Page 94

 R
 E
 S V R
 E C E V
 A A A A A A R C S C
 D D D D D G D V A I G E G G A A C L O
 1 1 1 1 1 N 1 E 1 N N T N N 1 1 A I B A E A A A
 0 1 2 3 4 D 5 D 2 T D n D E D 1 0 9 O n 0 n 8 7 6
 --_
 / 100 98 96 94 92 90 88 86 84 82 80 78 76 |_
 / 99 97 95 93 91 89 87 85 83 81 79 77 |
 AA0 | 1 75 | RESERVED
 AA1 | 2 74 | GND
 VCCIO | 3 73 | #TDO
 #TDI | 4 72 | RESERVED
 AA2 | 5 71 | EB0
 CS2 | 6 70 | EB1
 CHSL | 7 69 | EB2
 WRITE | 8 68 | EB3
 READ | 9 67 | EB4
RESERVED | 10 66 | VCCIO
 GND | 11 65 | EB5
RESERVED | 12 64 | EB6
RESERVED | 13 EPM7128STC100-15 63 | EB7
 AD9 | 14 62 | #TCK
 #TMS | 15 61 | RESERVED
 AD8 | 16 60 | RESERVED
 IRQ | 17 59 | GND
 VCCIO | 18 58 | RESERVED
 R_W | 19 57 | RESERVED
 LSTRBn | 20 56 | RESERVED
 AD7 | 21 55 | RESERVED
 AD6 | 22 54 | RESERVED
 AD5 | 23 53 | RESERVED
 AD4 | 24 52 | RESERVED
 AD3 | 25 51 | VCCIO
 | 27 29 31 33 35 37 39 41 43 45 47 49 _|
 \ 26 28 30 32 34 36 38 40 42 44 46 48 50 |
 \---
 G A A A R R R R V R R A G V A A A G W C A A A A A
 N D D D E E E E C E E 1 N C 1 1 1 N E E 1 2 3 4 5
 D 2 1 0 S S S S C S S 3 D C 4 5 6 D n n
 E E E E I E E I
 R R R R O R R N
 V V V V V V T
 E E E E E E
 D D D D D D

% *********************** functions for read/write to addresses 401 and 402******** %

SUBDESIGN w402_eqn
(
 R_W : INPUT; % R/W Line, LSTRBn %
 LSTRBn : INPUT;

 A[15..0] : INPUT; % Demultiplexed address bits %

 w402 : OUTPUT;
)

Type R Final Report

Page 95

BEGIN
 % CHECK CONDITIONS %
 if ((A[15..0] == H"0402") & (R_W == GND)) THEN
 w402 = VCC; % SET LINE HIGH %
 ELSE
 w402 = GND; % SET LINE LOW %
 END IF;

END;

SUBDESIGN w401_eqn
(
 R_W : INPUT; % R/W Line %
 LSTRBn : INPUT;

 A[15..0] : INPUT; % Demultiplexed address bits %

 w401 : OUTPUT;
)

BEGIN

 if (((A[15..0] == H"0401") OR (A[15..0] == H"0400")) & (LSTRBn == GND)

& (R_W == GND)) THEN
 w401 = VCC;
 ELSE
 w401 = GND;
 END IF;

END;

SUBDESIGN r402_eqn
(
 R_W : INPUT; % R/W Line %
 E : INPUT;
 LSTRBn : INPUT;

 A[15..0] : INPUT; % Demultiplexed address bits %

 r402 : OUTPUT;
)

BEGIN

 if ((A[15..0] == H"0402") & (R_W == VCC) & (E == VCC)) THEN
 r402 = VCC;
 ELSE
 r402 = GND;
 END IF;

END;

Type R Final Report

Page 96

SUBDESIGN r401_eqn
(
 R_W : INPUT; % R/W Line, E, LSTRBn %
 E : INPUT;
 LSTRBn : INPUT;

 A[15..0] : INPUT; % Demultiplexed address bits %

 r401 : OUTPUT;
)

BEGIN
 % CHECK CONDITIONS FOR ODD BYTE READ %
 if (((A[15..0] == H"0401") OR (A[15..0] == H"0400")) & (LSTRBn == GND)

& (R_W == VCC) & (E == VCC)) THEN
 r401 = VCC; % SET READ HIGH %

 ELSE
 r401 = GND; % SET READ LOW %
 END IF;

END;

Type R Final Report

Page 97

EXP_PORTS.GDF

Type R Final Report

Page 98

HC12_EXP.GDF

Type R Final Report

Page 99

MEMEXP.GDF

Type R Final Report

Page 100

Appendix D: References

This section contains links to the various data sheets and manuals that we used for our hardware

this semester. They are provided for a quick reference, and we do not make any claims to the

material contained in them.

The data sheets and manuals themselves have been included on the CD accompanying this

report.

Type R Final Report

Page 101

Garmin GPS16

GPS16 Manual: http://www.garmin.com/manuals/gps16qsg.pdf

PNI Vector 2X

Vector 2x Manual: http://www.precisionnav.com/technical-information/pdf/vector-2x.pdf

Analog Devices ADXL202JQC

ADXL202JQC Data Sheet: http://www.analog.com/productSelection/pdf/ADXL202_10_b.pdf

National Semiconductor UART

PC16552D Data Sheet: http://www.national.com/ds/NS/NS16C552.pdf

ECS HP-49U Crystal

HP-49U Datasheet: http://www.ecsxtal.com/pdf2/HC49U.PDF

http://www.ecsxtal.com/pdf2/HC49U.PDF
http://www.national.com/ds/NS/NS16C552.pdf
http://www.analog.com/productSelection/pdf/ADXL202_10_b.pdf
http://www.precisionnav.com/technical-information/pdf/vector-2x.pdf
http://www.garmin.com/manuals/gps16qsg.pdf

	Title Page
	Abstract
	Why "Type R"?
	Table of Contents
	Index of Figures and Tables
	Index of Appendices

	Introduction
	Module Overview
	Hardware Design
	Casing and Mounting
	Garmin GPS16
	National Semiconductor UART

	PNI Vector 2X Digital Compass Module
	Connections to HC12

	Analog Devices Accelerometer
	Communications
	RJ45 Color Setup

	Software Design
	GPS
	Math Functions
	Compass Setup and Data
	Compass Line Settings

	Accelerometer Setup and Data
	Communications Protocols
	PortP Communications Setup

	Main Program Flow
	Initialization
	Initial Coordinates/Start
	Finding Ball
	Ball Capture
	Hole Location/Drop-off

	Team Member Participation
	Jonathon
	Matthew
	David
	Ryan

	Final Budget
	Initial Budget
	Final Budget
	Reproduction Budget

	Power Budget
	Conclusion
	Appendix A: Schematics
	UART
	Compass
	Accelerometer
	Communications

	Appendix B: Code
	GPS
	Math Functions
	Compass
	Accelerometer
	Communications
	Slave Code

	Complete Program

	Appendix C: Altera Code
	Pinout and Read/Write 401 & 402
	EXP_PORTS.GDF
	HC12_EXP.GDF
	MEMEXP.GDF

	Appendix D: References

